設(shè)(3x
1
3
+x
1
2
n展開式的各項系數(shù)之和為t,其二項式系數(shù)之和為h,若t+h=272,則展開式的x2項的系數(shù)是( 。
A.
1
2
B.1C.2D.3
根據(jù)題意,展開式的各項系數(shù)之和為t,其二項式系數(shù)之和為h
∴t=4n,h=2n
∵t+h=272,
∴4n+2n=272
∴(2n-16)(2n+17)=0
∴2n=16
∴n=4
∴展開式的通項為:Tr+1=
Cr4
×(3x
1
3
)
4-r
×(x
1
2
)
r
=
Cr4
×34-r×x
8+r
6

8+r
6
=2
,則r=4,
∴展開式的x2項的系數(shù)是
C44
×30=1

故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(3x
1
3
+x
1
2
n展開式的各項系數(shù)之和為t,其二項式系數(shù)之和為h,若t+h=272,則展開式的x2項的系數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案