在區(qū)間[-1,1]上隨機取一個數(shù)x,即高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。時,要使高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。的值介于0到高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。之間,需使高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,區(qū)間長度為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,由幾何概型知高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。的值介于0到高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。之間的概率為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。.故選A.

答案:A

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。【命題立意】:本題考查了三角函數(shù)的值域和幾何概型問題,由自變量x的取值范圍,得到函數(shù)值高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。的范圍,再由長度型幾何概型求得.

解:(1)因為橢圓E: 高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。(a,b>0)過M(2,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。) ,N(高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,1)兩點,

所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。解得高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。橢圓E的方程為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,設該圓的切線方程為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。解方程組高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,即高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

則△=高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,即高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。要使高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,需使高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,即高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,即高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,因為直線高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。為圓心在原點的圓的一條切線,所以圓的半徑為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,所求的圓為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,此時圓的切線高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。都滿足高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,而當切線的斜率不存在時切線為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。與橢圓高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。的兩個交點為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。滿足高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,綜上, 存在圓心在原點的圓高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。.

因為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

①當高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

因為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。當且僅當高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。時取”=”.

②     當高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。時,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。.

③     當AB的斜率不存在時, 兩個交點為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,所以此時高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

綜上, |AB |的取值范圍為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。即: 高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

【命題立意】:本題屬于探究是否存在的問題,主要考查了橢圓的標準方程的確定,直線與橢圓的位置關系直線與圓的位置關系和待定系數(shù)法求方程的方法,能夠運用解方程組法研究有關參數(shù)問題以及方程的根與系數(shù)關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年江西省新余四中高三(上)第一次周周練數(shù)學試卷(理科)(解析版) 題型:解答題

已知定義在區(qū)間[-1,1]上的函數(shù)為奇函數(shù)..
(1)求實數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結論.
(3)f(x)在x∈[m,n]上的值域為[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省贛州市會昌中學高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知定義在區(qū)間[-1,1]上的函數(shù)為奇函數(shù)..
(1)求實數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結論.
(3)f(x)在x∈[m,n]上的值域為[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省五校協(xié)作體高二(上)聯(lián)合競賽數(shù)學試卷(文科)(解析版) 題型:解答題

已知定義在區(qū)間[-1,1]上的函數(shù)為奇函數(shù)..
(1)求實數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結論.
(3)f(x)在x∈[m,n]上的值域為[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省贛州市會昌中學高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知定義在區(qū)間[-1,1]上的函數(shù)為奇函數(shù)..
(1)求實數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結論.
(3)f(x)在x∈[m,n]上的值域為[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省吉安市白鷺洲中學高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知定義在區(qū)間[-1,1]上的函數(shù)為奇函數(shù)..
(1)求實數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結論.
(3)f(x)在x∈[m,n]上的值域為[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步練習冊答案