【題目】中,為直角,,相交于點,,.

1)試用、表示向量;

2)在線段上取一點,在線段上取一點,使得直線,設(shè),,求的值;

3)若,過作線段,使得的中點,且,求的取值范圍.

【答案】1;(2;(3.

【解析】

1)設(shè),根據(jù),三點共線,可得存在非零實數(shù)使得,從而,,利用平面向量基本定理可得,的關(guān)系,同理,,三點共線,可得,的關(guān)系,由此即可求得,的值,即得解;(2)將兩次線性表示,利用平面向量基本定理,建立等式,消參,即可證得結(jié)論

3如圖,設(shè)的夾角為,則的夾角為,求出,再求取值范圍.

1)解:設(shè)

,,三點共線,存在非零實數(shù)使得

,三點共線,存在非零實數(shù)使得

①②解得:,

所以.

2)證明:由(1)知,

,,三點共線,

存在非零實數(shù)使得

消去

所以 .

3

如圖,設(shè)的夾角為,則的夾角為,

所以

所以

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于方程為的曲線給出以下三個命題:

1)曲線關(guān)于原點對稱;(2)曲線關(guān)于軸對稱,也關(guān)于軸對稱,且軸和軸是曲線僅有的兩條對稱軸;(3)若分別在第一、第二、第三、第四象限的點,都在曲線上,則四邊形每一條邊的邊長都大于2

其中正確的命題是(

A.1)(2B.1)(3C.2)(3D.1)(2)(3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是平面直角坐標系中兩兩不同的四點,,,,則稱調(diào)和分割.已知平面上的點調(diào)和分割點,則下列說法正確的是

A. 可能線段的中點

B. 可能線段的中點

C. 可能同時在線段

D. 不可能同時在線段的延長線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照國際乒聯(lián)的規(guī)定,標準的乒乓球在直徑符合條件下,重量為2.7克,其重量的誤差在區(qū)間內(nèi)就認為是合格產(chǎn)品,在正常情況下樣本的重量誤差服從正態(tài)分布.現(xiàn)從某廠生產(chǎn)的一批產(chǎn)品中隨機抽取10件樣本,其重量如下:

2.72 2.68 2.7 2.75 2.66 2.7 2.6 2.69 2.7 2.8

(1)計算上述10件產(chǎn)品的誤差的平均數(shù)及標準差

(2)①利用(1)中求的平均數(shù),標準差,估計這批產(chǎn)品的合格率能否達到;

②如果產(chǎn)品的誤差服從正態(tài)分布,那么從這批產(chǎn)品中隨機抽取10件產(chǎn)品,則有不合格產(chǎn)品的概率為多少.(附:若隨機變量服從正態(tài)分布,則,.用0.6277,用0.9743分別代替計算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點,焦距為,動弦平行于軸,且.

(1)求橢圓的方程;

(2)過分別作直線交橢圓于,且,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的三內(nèi)角A,B,C所對的邊分別為a,bc,若cosA=cosBb=,c=4M,N是邊AC上的兩個動點,且AM=2CN,則的最大值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=ax-lnx)(aR).

(Ⅰ)試討論函數(shù)fx)的單調(diào)性;

(Ⅱ)若對任意x∈(0,+∞),不等式fx)<+x-1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(

A.公差為0的等差數(shù)列是等比數(shù)列B.成等比數(shù)列的充要條件是

C.公比的等比數(shù)列是遞減數(shù)列D.成等差數(shù)列的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是()

A. 若函數(shù)為奇函數(shù),則;

B. 若數(shù)列為常數(shù)列,則既是等差數(shù)列也是等比數(shù)列;

C. 中,的充要條件;

D. 若兩個變量的相關(guān)系數(shù)為,則越大,之間的相關(guān)性越強.

查看答案和解析>>

同步練習冊答案