(1)已知(x+1)6(ax-1)2的展開式中含x3的項的系數(shù)是20,求a的值。

(2)設(5x-)n的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,若M-N=240,求展開式中二項式系數(shù)最大的項。

(1)0或5

(2)6


本試題主要是考查了二項式定理的運用。求解各個項的系數(shù)和采用賦值的思想得到。
同時也考查了二項式系數(shù)的性質,以及二項式系數(shù)的最大項的綜合運用。
(1)0或5(2)依題意得,M=4n=(2n)2,N=2n,于是有(2n)2-2n=240,(2n+15)(2n-16)=0,2n=16=24,n=4,得6
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x為正數(shù),下列求極值的過程正確的是( 。
A、y=x2+2x+
4
x3
≥3•
3x2•2x•
4
x3
=6,∴ymin=6
B、y=2+x+
1
x
≥3•
32•x•
1
x
=3
32
,∴ymin=3
32
C、y=2+x+
1
x
≥2+2
x•
1
x
=4∴ymin=4
D、y=x(1-x)(1-2x)≤
1
3
[
3x+(1-x)+(1-2x)
3
]3=
8
81
,∴ymin=
8
81

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個極值點,其中m,n∈R,m<0,
(1)求m與n的關系式;
(2)求f(x)的單調區(qū)間;
(3)若m<-4,求證:函數(shù)y=f(x)的圖象與x軸只有一個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知x≥-1,比較x3+1與x2+x的大小,并說明x為何值時,這兩個式子相等.
(2)解關于x的不等式x2-ax-6a2>0,其中a<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)設f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1),f(x)=log
1
2
(1-x)
,則函數(shù)f(x)在(1,2)上的解析式是
y=log
1
2
(x-1)
y=log
1
2
(x-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求解析式:
(1)已知f(
1
x
)=
x
1-x2
,求f(x); 
(2)已知二次函數(shù)f(x)滿足f(0)=0且f(x+1)=f(x)+x+1,求f(x)的表達式.

查看答案和解析>>

同步練習冊答案