在△ABC中,a=x,b=2,B=45°,若△ABC只有一解,則x的取值集合為
0<x≤2或x=2
2
0<x≤2或x=2
2
分析:若已知三角形的兩邊和其中一邊的對(duì)角,要求該三角形的形狀大小唯一確定,則該三角形是直角三角形或鈍角三角形,根據(jù)勾股定理確定x的長(zhǎng),再進(jìn)一步確定鈍角三角形時(shí)的取值范圍.
解答:解:如圖所示,
根據(jù)題意,得該三角形一定是直角三角形或鈍角三角形.
當(dāng)∠C=90°時(shí),則x=2;
當(dāng)∠A=90°時(shí),則x=2
2
;
當(dāng)∠A<45°時(shí),∠C>90°,則0<x<2,
故答案為:0<x≤2或x=2
2
點(diǎn)評(píng):此題要注意:已知三角形的兩邊和其中一邊的對(duì)角,要使該三角形的形狀大小唯一確定,則該三角形是直角三角形或鈍角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=x,b=2,B=45°,若這樣的△ABC有兩個(gè),則實(shí)數(shù)x的取值范圍是( 。
A、(2,+∞)
B、(0,2)
C、(2,2
2
D、(
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=x,b=2,B=45°,若此三角形有兩解,則x的取值范圍是(  )
A、x>2
B、x<2
C、2<x<2
2
D、2<C<2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面是一道選擇題的兩種解法,兩種解法看似都對(duì),可結(jié)果并不一致,問(wèn)題出在哪兒?
[題]在△ABC中,a=x,b=2,B=45°,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,  2
2
)
D.(
2
,  2)

[解法1]△ABC有兩解,asinB<b<a,xsin45°<2<x,即2<x<2
2
,故選C.
[解法2]
a
sinA
=
b
sinB
,sinA=
asinB
b
=
xsin45°
2
=
2
x
4

△ABC有兩解,bsinA<a<b,
2
x
4
<x<2
,即0<x<2,故選B.
你認(rèn)為
解法1
解法1
是正確的  (填“解法1”或“解法2”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,下列說(shuō)法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內(nèi)切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設(shè)三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對(duì)應(yīng)的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說(shuō)法的序號(hào)是
①④⑤
①④⑤
(注:把你認(rèn)為是正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案