已知向量m=(2sinx,cosx),n=(cosx,2cosx),定義函數(shù)f(x)=m·n-1.
(1)求函數(shù)f(x)的最小正周期;
(2)確定函數(shù)f(x)的單調(diào)區(qū)間、對(duì)稱軸與對(duì)稱中心.

(1);(2)f(x)的單調(diào)遞增區(qū)間是(kπ-,kπ+),k∈Z;f(x)的單調(diào)遞減區(qū)間是(kπ+,kπ+),k∈Z;函數(shù)f(x)的對(duì)稱軸為,k∈Z;函數(shù)f(x)的對(duì)稱中心為 ,k∈Z  .

解析試題分析:(1)根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算得到函數(shù)的解析式,化為標(biāo)準(zhǔn)式,然后利用周期公式來求;(2) 根據(jù)正弦曲線的單調(diào)區(qū)間:單調(diào)遞增,單調(diào)遞減求目標(biāo)函數(shù)的單調(diào)區(qū)間,對(duì)稱軸是根據(jù)來求;對(duì)稱中心是根據(jù)來求.
試題解析:(1)因?yàn)閙·n=2sinxcosx+2cos2x               2分
=sin2x+cos2x+1,                            4分
所以f(x)=2sin(2x+),
故T==π.                                     6分
(2)f(x)的單調(diào)遞增區(qū)間是(kπ-,kπ+),k∈Z,     8分
f(x)的單調(diào)遞減區(qū)間是(kπ+,kπ+),k∈Z.       10分
函數(shù)f(x)的對(duì)稱軸為,k∈Z,         12分
函數(shù)f(x)的對(duì)稱中心為 ,k∈Z       14分
考點(diǎn):平面向量、三角函數(shù)的圖像與性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,求下列各式的值:
(Ⅰ);
(Ⅱ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知,且,求的值;
(2)已知為第二象限角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)在區(qū)間上的零點(diǎn);
(Ⅱ)設(shè),求函數(shù)的圖象的對(duì)稱軸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知α是第一象限的角,且cosα=,求的值.
(2)化簡(jiǎn),其中π<α<2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)),其圖象相鄰兩條對(duì)稱軸之間的距離等于
(1)求的值;
(2)當(dāng)時(shí),求函數(shù)的最大值和最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,試求式子的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
在銳角中,已知內(nèi)角..所對(duì)的邊分別為..,向量,,且向量共線.
(1)求角的大。
(2)如果,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,角A為鈍角,且sin A,點(diǎn)PQ分別是在角A的兩邊上不同于點(diǎn)A的動(dòng)點(diǎn).
 
(1)若AP=5,PQ=3,求AQ的長(zhǎng);
(2)若∠APQα,∠AQPβ,且cos α,求sin(2αβ)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案