已知x=log2
3
,y=log0.5π,z=0.9-1.1,則( 。
A、x<y<z
B、y<x<z
C、y<z<x
D、z<y<x
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)對數(shù)和指數(shù)冪的大小即可得到結(jié)論.
解答:解:0<log2
3
<1,log0.5π<0,z=0.9-1.1>1,
即0<x<1,y<0,z>1,
則y<x<z,
故選:B.
點評:本題主要函數(shù)值的大小比較,利用對數(shù)和指數(shù)冪的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x丨y=lg
2-x
x
},N={y|y=x2+2x+3},則(∁RM)∩N=(  )
A、{x丨0<x<1}
B、{x丨x>1}
C、{x丨x≥2}
D、{x丨1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
x-1(x≥0)
1
x
(x<0)
,若f(f(a))=-
1
2
,則實數(shù)a=(  )
A、4
B、-2
C、4或-
1
2
D、4或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈(0,1),a=2x,b=x 
1
2
,c=lgx,則下列結(jié)論正確的是( 。
A、b<c<a
B、b<a<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log212-log23=( 。
A、2
B、0
C、
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
x
(x>4)的反函數(shù)為( 。
A、y=
1
x2
(x<
1
2
B、y=
1
x
(0<x
1
2
C、y=
1
x
(x>
1
2
D、y=
1
x2
(0<x
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對實數(shù)a和b,定義運算“*”:a*b=
a,a-b≤1
b,a-b>1
,設(shè)函數(shù)f(x)=(x2+1)*(x+2),若函數(shù)y=f(x)-c的圖象與x軸恰有兩個公共點,則實數(shù)C的取值范圍是( 。
A、(2,4)∪(5,+∞)
B、(1,2]∪(4,5]
C、(-∞,1)∪(4,5]
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2-x+2,x≥3
|x+2|,x<3
,則不等式f(x)≥4的解集是( 。
A、(-∞,-1]∪[2,+∞)
B、[2,+∞)∪(-∞,-6]
C、[-6,2]∪[3,+∞)
D、(-5,1)∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=
log2(16-x)(x≤0)
f(x-1)(x>0)
.則f(1)的值為
 

查看答案和解析>>

同步練習(xí)冊答案