【題目】在平行四邊形中,,,過(guò)點(diǎn)作的垂線,交的延長(zhǎng)線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點(diǎn),為的中點(diǎn),且平面平面,求三棱錐的體積.
【答案】(1)見(jiàn)解析; (2).
【解析】
(1)先求得,,可得,結(jié)合,可得,,,可證明平面,利用面面垂直的判定定理可得平面平面;(2)由面面垂直的性質(zhì)可得平面,取的中點(diǎn)為,連結(jié),則,可證明平面,由此利用棱錐的體積公式可得三棱錐的體積.
(1)如題圖1,在中,,,所以.
在中,,所以.
所以.
如題圖2,,.又因?yàn)?/span>,所以,,,
所以平面,又因?yàn)?/span>平面,所以平面平面.
(2)解法一:因?yàn)槠矫?/span>平面,
平面平面,平面,,所以平面.
取的中點(diǎn)為,連結(jié),則,所以平面.
即為三棱錐的高.
且.
因?yàn),三棱錐的體積為.
解法二:因?yàn)槠矫?/span>平面,平面平面,平面,
,所以平面.
因?yàn)?/span>為的中點(diǎn).
所以三棱錐的高等于.
因?yàn)?/span>為的中點(diǎn),所以的面積是四邊形的面積的,
從而三棱錐的體積是四棱錐的體積的.
面,
所以三棱錐的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)若曲線在點(diǎn)處的切線與軸平行,求;
(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,亦稱(chēng)“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的),類(lèi)比“趙爽弦圖”,可類(lèi)似地構(gòu)造如圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè),則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:.(為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,,E為AB的中點(diǎn).將沿DE翻折,得到四棱錐.設(shè)的中點(diǎn)為M,在翻折過(guò)程中,有下列三個(gè)命題:
①總有平面;
②線段BM的長(zhǎng)為定值;
③存在某個(gè)位置,使DE與所成的角為90°.
其中正確的命題是_______.(寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長(zhǎng)度單位,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于、兩點(diǎn),且點(diǎn)的坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸為極軸建立極坐標(biāo)系,曲線.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求與直線平行,且被曲線截得的弦長(zhǎng)為的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)定點(diǎn)且與直線垂直的直線與軸、軸分別交于點(diǎn),點(diǎn)滿(mǎn)足.
(1)若以原點(diǎn)為圓心的圓與有唯一公共點(diǎn),求圓的軌跡方程;
(2)求能覆蓋的最小圓的面積;
(3)在(1)的條件下,點(diǎn)在直線上,圓上總存在兩個(gè)不同的點(diǎn)使得為坐標(biāo)原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究男、女生的身高差異,現(xiàn)隨機(jī)從高二某班選出男生、女生各人,并測(cè)量他們的身高,測(cè)量結(jié)果如下(單位:厘米):
男:
女:
根據(jù)測(cè)量結(jié)果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.
請(qǐng)根據(jù)測(cè)量結(jié)果得到名學(xué)生身高的中位數(shù)中位數(shù)(單位:厘米),將男、女身高不低于和低于的人數(shù)填入下表中,并判斷是否有的把握認(rèn)為男、女身高有差異?
參照公式:
若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高,假設(shè)可以用測(cè)量結(jié)果的頻率代替概率,試求從高三的男生中任意選出2人,恰有1人身高屬于正常的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com