隨著經(jīng)濟(jì)的發(fā)展,人們生活水平的提高,中學(xué)生的營(yíng)養(yǎng)與健康問(wèn)題越來(lái)越得到學(xué)校與家長(zhǎng)的重視. 從學(xué)生體檢評(píng)價(jià)報(bào)告單了解到某校3000名學(xué)生的體重發(fā)育評(píng)價(jià)情況,得右表:

 
偏瘦
正常
肥胖
女生(人)
300
865

男生(人)

885

已知從這批學(xué)生中隨機(jī)抽取1名學(xué)生,抽到偏瘦男生的概率為0.15.
(Ⅰ)求的值;
(Ⅱ)若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取60名,問(wèn)應(yīng)在肥胖學(xué)生中抽出多少名?
(Ⅲ)已知,,求肥胖學(xué)生中男生不少于女生的概率.

(Ⅰ)=450;(Ⅱ)應(yīng)在肥胖學(xué)生中抽10名;(Ⅲ).

解析試題分析:(Ⅰ)利用“從3000名學(xué)生中隨機(jī)抽取1名學(xué)生,抽到偏瘦男生的概率為0.15”可求得;(Ⅱ)根據(jù)分層抽樣可求;(Ⅲ)利用古典概型求解.
試題解析:(Ⅰ)由題意可知, ∴=450(人)     3分
(Ⅱ)由題意知,肥胖學(xué)生人數(shù)為(人)。 設(shè)應(yīng)在肥胖學(xué)生中抽取 人,
, ∴(人)   答:應(yīng)在肥胖學(xué)生中抽10名    6分
(Ⅲ)由題意可知, ,且,,滿(mǎn)足條件的
)有(243,257),(244,256), ,(257,243),共有15組。
設(shè)事件A:“肥胖學(xué)生中男生不少于女生”,即,滿(mǎn)足條件的(,
(243,257),(244,256), ,(250,250),共有8組,所以。
答:肥胖學(xué)生中男生不少于女生的概率為    12分
考點(diǎn):分層抽樣,古典概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)口袋中有紅球3個(gè),白球4個(gè).
(Ⅰ)從中不放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),求摸2次恰好第2次中獎(jiǎng)的概率;
(Ⅱ)每次同時(shí)摸2個(gè),并放回,摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),連續(xù)摸4次,求中獎(jiǎng)次數(shù)X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校學(xué)習(xí)小組開(kāi)展“學(xué)生語(yǔ)文成績(jī)與外語(yǔ)成績(jī)的關(guān)系”的課題研究,對(duì)該校高二年級(jí)800名學(xué)生上學(xué)期期末語(yǔ)文和外語(yǔ)成績(jī),按優(yōu)秀和不優(yōu)秀分類(lèi)得結(jié)果:語(yǔ)文和外語(yǔ)都優(yōu)秀的有60人,語(yǔ)文成績(jī)優(yōu)秀但外語(yǔ)不優(yōu)秀的有140人,外語(yǔ)成績(jī)優(yōu)秀但語(yǔ)文不優(yōu)秀的有100人.
(Ⅰ)能否在犯錯(cuò)概率不超過(guò)0.001的前提下認(rèn)為該校學(xué)生的語(yǔ)文成績(jī)與外語(yǔ)成績(jī)有關(guān)系?
(Ⅱ)4名成員隨機(jī)分成兩組,每組2人,一組負(fù)責(zé)收集成績(jī),另一組負(fù)責(zé)數(shù)據(jù)處理。求學(xué)生甲分到負(fù)責(zé)收集成績(jī)組,學(xué)生乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率。


0.010
0.005
0.001

6.635
7.879
10.828
附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷(xiāo),凡在該超市購(gòu)物滿(mǎn)300元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球.顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就要將獎(jiǎng)盒中的球全部摸出才停止.規(guī)定摸到紅球獎(jiǎng)勵(lì)10元,摸到白球或黃球獎(jiǎng)勵(lì)5元,摸到黑球不獎(jiǎng)勵(lì).
(Ⅰ)求1名顧客摸球3次停止摸獎(jiǎng)的概率;
(Ⅱ)記為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)口袋中有個(gè)白球和個(gè)紅球,每次從袋中摸出兩個(gè)球(每次摸球后把這兩個(gè)球放回袋中),若摸出的兩個(gè)球顏色相同為中獎(jiǎng),否則為不中獎(jiǎng).
(Ⅰ)試用含的代數(shù)式表示一次摸球中獎(jiǎng)的概率;
(Ⅱ)若,求三次摸球恰有一次中獎(jiǎng)的概率;
(Ⅲ)記三次摸球恰有一次中獎(jiǎng)的概率為,當(dāng)為何值時(shí),取最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某社團(tuán)組織名志愿者利用周末和節(jié)假日參加社會(huì)公益活動(dòng),活動(dòng)內(nèi)容是:1、到各社區(qū)宣傳慰問(wèn),倡導(dǎo)文明新風(fēng);2、到指定的醫(yī)院、福利院做義工,幫助那些需要幫助的人.各位志愿者根據(jù)各自的實(shí)際情況,選擇了不同的活動(dòng)項(xiàng)目,相關(guān)的數(shù)據(jù)如下表所示:

 
宣傳慰問(wèn)
義工
總計(jì)
20至40歲
11
16
27
大于40歲
15
8
23
總計(jì)
26
24
50
(1) 分層抽樣方法在做義工的志愿者中隨機(jī)抽取6名,年齡大于40歲的應(yīng)該抽取幾名?
(2) 上述抽取的6名志愿者中任取2名,求選到的志愿者年齡大于40歲的人數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者.從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)間是:.
(I)求圖中的值并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);
(II)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@20名中采用簡(jiǎn)單隨機(jī)抽樣方法選取3名志愿者擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲.乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中將可以獲得2分;方案乙的中獎(jiǎng)率為,中將可以得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中將與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為,求的概率;
(2)若小明.小紅兩人都選擇方案甲或方案乙進(jìn)行抽獎(jiǎng),問(wèn):他們選擇何種方案抽獎(jiǎng),累計(jì)的得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2013年3月2日,國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米. 某城市環(huán)保部門(mén)隨機(jī)抽取了一居民區(qū)去年20天PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別
PM2.5濃度
(微克/立方米)
頻數(shù)(天)
頻率
 第一組
(0,25]
5
0.25
第二組
(25,50]
10
0.5
第三組
(50,75]
3
0.15
第四組
(75,100)
2
0.1
(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案