[2014·南通調研]設α,β是空間內兩個不同的平面,m,n是平面α及β外的兩條不同直線.從“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中選取三個作為條件,余下一個作為結論,寫出你認為正確的一個命題:________(用序號表示).
①③④⇒②(或②③④⇒①)
將①③④作為條件,可結合長方體進行證明,即從長方體的一個頂點出發(fā)的兩條棱與其對面垂直,這兩個對面互相垂直,故①③④⇒②;對于②③④⇒①,可仿照前面的例子說明.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,⊥平面,,,分別為線段的中點.

(1)求證:∥平面;    
(2)求證:⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正三棱柱中,點在邊上,
(1)求證:平面;
(2)如果點的中點,求證://平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,長方體中,,,點的中點。

(1)求證:直線∥平面
(2)求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱中,平面,,,.以
,為鄰邊作平行四邊形,連接

(1)求證:∥平面 ;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點,使平面與平面垂直?若存在,求出的長;若
不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知空間三點A(1,3,2),B(1,2,1),C(-1,2,3),則下列向量中是平面ABC的法向量的為(  )
A.(-1,-2,5)B.(1,3,2)C.(1,1,1)D.(-1,1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設m,n是兩條不同的直線,、是兩個不同的平面.則下列命題中正確的是(    )
A.m⊥,n,m⊥n
B.,=m,n⊥mn⊥
C.,m⊥,n∥m⊥n
D.,m⊥,n∥m⊥n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[2013·南京模擬]已知l,m是兩條不同的直線,α,β是兩個不同的平面,下列命題:
①若l?α,m?α,l∥β,m∥β,則α∥β;
②若l?α,l∥β,α∩β=m,則l∥m;
③若α∥β,l∥α,則l∥β;
④若l⊥α,m∥l,α∥β,則m⊥β.
其中真命題是________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,上一點,面,四邊形為矩形 ,,
(1)已知,且∥面,求的值;
(2)求證:,并求點到面的距離.

查看答案和解析>>

同步練習冊答案