已知函數(shù)f(x)=x
1-2x

(1)求x0,使f′(x0)=0;
(2)求函數(shù)f(x)在區(qū)間[-1,
1
2
]的值域.
(1)f′(x)=
1-2x
-
x
1-2x
=
1-3x
1-2x
,
所以f′(x0)=
1-3x0
1-2x0
=0,則x0=
1
3

(2)當(dāng)(-1,
1
3
)時(shí),f′(x)>0,f(x)是增函數(shù);
當(dāng)x∈(
1
3
1
2
)
時(shí),f′(x)<0,f(x)是減函數(shù);
f(-1)=-
3
,f(
1
3
)=
3
9
,f(
1
2
)=0,
則函數(shù)f(x)在區(qū)間[-1,
1
2
]上的最大值為
3
9
,最小值為-
3
,
所以函數(shù)f(x)在區(qū)間[-1,
1
2
]的值域?yàn)閇-
3
,
3
9
].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)滿足f(2x-1)=
1
2
f(x)+x2-x+2
,則函數(shù)f(x)在(1,f(1))處的切線是( 。
A.2x+3y+12=0B.2x-3y+10=0C.2x-y+2=0D.2x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln(ax+1)+
1-x
1+x
,x≥0
,其中a>0.
(Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)的最小值為1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

經(jīng)過點(diǎn)P(2,1)且與曲線f(x)=x3-2x2+1相切的直線l的方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△AnBnCn中,記角An、Bn、Cn所對的邊分別為an、bn、cn,且這三角形的三邊長是公差為1的等差數(shù)列,若最小邊an=n+1,則
lim
n→∞
Cn
=( 。
A.
π
2
B.
π
3
C.
π
4
D.
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=-x3+3x在[-2,2]上的最大值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ex-ax(e為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)如果對任意x∈[2,+∞),不等式f(x)>x+x2恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)n∈N*,求證:(
1
n
n+(
2
n
n+(
3
n
n+…+(
n
n
n
e
e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f(x)=x3-
1
2
x2-2x+5
,若對任意x∈[0,2]都有f(x)<m成立,則m的取值范圍為( 。
A.(7,+∞)B.(8,+∞)C.[7,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x0,過M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x0表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x0

查看答案和解析>>

同步練習(xí)冊答案