1.若|$\frac{x}{x+1}$|>$\frac{x}{x+1}$則實數(shù)x的取值范圍是( 。
A.(-1,0)B.[-1,0]C.(-∞,-1)∪(0,+∞)D.(-∞,-1]∪[0,+∞)

分析 由不等式可得$\frac{x}{x+1}$<0,即x(x+1)<0,由此求得實數(shù)x的取值范圍.

解答 解:由|$\frac{x}{x+1}$|>$\frac{x}{x+1}$,可得$\frac{x}{x+1}$<0,即x(x+1)<0,求得-1<x<0,
故選:A.

點評 本題主要考查分式不等式、一元二次不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知等比數(shù)列{an}的公比q>1,a2,a3是方程x2-6x+8=0的兩根.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{2n•an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.定義運算a⊕b=a2+2ab-b2,則cos$\frac{π}{6}$⊕sin$\frac{π}{6}$=$\frac{1+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=x-$\frac{1}{3}$x3的遞增區(qū)間為( 。
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=2-3x-$\frac{4}{x}$(x>0)的最值情況是(  )
A.有最小值2-4$\sqrt{3}$B.有最大值2-4$\sqrt{3}$C.有最小值2+4$\sqrt{3}$D.有最大值2+4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.曲線y=ln2x到直線2x-y+1=0距離的最小值為$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.直線3x-4y+1=0與直線6x-8y-1=0間的距離為$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.直線$\sqrt{3}$x-y+a=0(a為常數(shù))的傾斜角為( 。
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.二項式(2$\sqrt{x}$-$\frac{a}{\sqrt{x}}$)n展開式中所有二項式系數(shù)和為64,展開式中的常數(shù)項為-160,則a=1.

查看答案和解析>>

同步練習冊答案