精英家教網 > 高中數學 > 題目詳情
已知雙曲線的漸近線方程為,左焦點為F,過的直線為,原點到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點CD,問是否存在實數,使得以CD為直徑的圓經過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
(1)(2)。

試題分析:(1)∵                      2分
原點到直線AB的距離, 。捶
 故所求雙曲線方程為           6分
(2)把中消去y,整理得 .                  8分
,則 
因為以CD為直徑的圓經過雙曲線的左焦點F,所以 ,    10分
可得    把代入,
解得:                      11分
,得滿足,    12分
點評:直線與圓錐曲線聯系在一起的綜合題在高考中多以高檔題、壓軸題出現,主要涉及位置關系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數形結合、分類討論、函數與方程、等價轉化等數學思想方法.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

直線與拋物線所圍成的圖形面積是(     )
A.20B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

焦點在軸上,漸近線方程為的雙曲線的離心率為_______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知曲線Cy=2x2,點A(0,-2)及點B(3,a),從點A觀察點B,要實現不被曲線C擋住,則實數a的取值范圍是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

若直線過雙曲線的一個焦點,且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點軸不平行的直線與雙曲線相交于不同的兩點的垂直平分線為,求直線軸上截距的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓mx2 + ny2 = 1與直線x+y-1=0交于A、B兩點,過原點與線段AB中點的直線的斜率為,則=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過雙曲線左焦點的直線與以右焦點為圓心、為半徑的圓相切于A點,且,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓具有性質:若是橢圓為常數上關于原點對稱的兩點,點是橢圓上的任意一點,若直線的斜率都存在,并分別記為,,那么之積是與點位置無關的定值
試對雙曲線為常數寫出類似的性質,并加以證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線(a>0,b>0)的離心率是,則的最小值為  (    )
A.B.1C.2D.

查看答案和解析>>

同步練習冊答案