已知,是橢圓的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P,使得,則橢圓的離心率的取值范圍是( )
A.B.C.D.
B

試題分析:由已知設(shè)橢圓方程為,且有離心率,,,設(shè)點(diǎn),由,化簡(jiǎn)得聯(lián)立方程組得,解得,又,所以有.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn).
(1)寫出的方程;
(2) ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)P是橢圓外的任意一點(diǎn),過點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。
(1)若點(diǎn)P的坐標(biāo)為,求直線的方程。
(2)設(shè)橢圓的左焦點(diǎn)為F,請(qǐng)問:當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),是否總是相等?若是,請(qǐng)給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:)上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為,左、右焦點(diǎn)分別為,,點(diǎn)是右準(zhǔn)線上任意一點(diǎn),過作直 線的垂線交橢圓于點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:直線與直線的斜率之積是定值;
(3)點(diǎn)的縱坐標(biāo)為3,過作動(dòng)直線與橢圓交于兩個(gè)不同點(diǎn),在線段上取點(diǎn),滿足,試證明點(diǎn)恒在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)F1,F(xiàn)2是橢圓C:(a>b>0)的左、右焦點(diǎn),過F1的直線交于A,B兩點(diǎn).若AB⊥AF2,|AB|:|AF2|=3:4,則橢圓的離心率為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為(   )
A.8B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)作一直線與橢圓相交于A、B兩點(diǎn),若點(diǎn)恰好為弦的中點(diǎn),則所在直線的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓C:的左右焦點(diǎn)分別為F1,F2,P為橢圓上異于端點(diǎn)的任意的點(diǎn),PF1,PF2的中點(diǎn)分別為M,N,O為坐標(biāo)原點(diǎn),四邊形OMPN的周長(zhǎng)為2,則△的周長(zhǎng)是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

時(shí)秒“嫦娥二號(hào)”探月衛(wèi)星由長(zhǎng)征三號(hào)丙運(yùn)載火箭送入近地點(diǎn)高度約公里、遠(yuǎn)地點(diǎn)高度約萬公里的直接奔月橢圓(地球球心為一個(gè)焦點(diǎn))軌道Ⅰ飛行。當(dāng)衛(wèi)星到達(dá)月球附近的特定位置時(shí),實(shí)施近月制動(dòng)及軌道調(diào)整,衛(wèi)星變軌進(jìn)入遠(yuǎn)月面公里、近月面公里(月球球心為一個(gè)焦點(diǎn))的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機(jī)變軌進(jìn)入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開展相關(guān)技術(shù)試驗(yàn)和科學(xué)探測(cè)。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大。
(Ⅱ)以為右焦點(diǎn),求橢圓軌道Ⅱ的標(biāo)準(zhǔn)方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案