【題目】拋擲一個質(zhì)地均勻的骰子的試驗(yàn),事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“不小于5的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A或事件B至少有一個發(fā)生的概率為( )
A.B.C.D.
【答案】A
【解析】
由古典概型概率公式分別計(jì)算出事件A和事件B發(fā)生的概率,又通過列舉可得事件A和事件B為互斥事件,進(jìn)而得出事件A或事件B至少有一個發(fā)生的概率即為事件A和事件B的概率之和.
事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“不小于5的點(diǎn)數(shù)出現(xiàn)”,
∴P(A),P(B),
又小于5的偶數(shù)點(diǎn)有2和4,不小于5的點(diǎn)數(shù)有5和6,
所以事件A和事件B為互斥事件,
則一次試驗(yàn)中,事件A或事件B至少有一個發(fā)生的概率為
P(A∪B)=P(A)+P(B),
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,卷一《方田》中有如下兩個問題:
[三三]今有宛田,下周三十步,徑十六步.問為田幾何?
[三四]又有宛田,下周九十九步,徑五十一步.問為田幾何?
翻譯為:[三三]現(xiàn)有扇形田,弧長30步,直徑長16步.問這塊田面積是多少?
[三四]又有一扇形田,弧長99步,直徑長51步.問這塊田面積是多少?
則下列說法正確的是( )
A.問題[三三]中扇形的面積為240平方步B.問題[三四]中扇形的面積為平方步
C.問題[三三]中扇形的面積為60平方步D.問題[三四]中扇形的面積為平方步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,M、N分別是AB、BC的中點(diǎn).
(1)求證:MN∥平面A1B1C1D1
(2)求證:平面B1MN⊥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5;不等式選講.
已知函數(shù).
(1)若的解集非空,求實(shí)數(shù)的取值范圍;
(2)若正數(shù)滿足, 為(1)中m可取到的最大值,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn),直線過點(diǎn)與拋物線交于, 兩點(diǎn).點(diǎn)關(guān)于軸的對稱點(diǎn)為,連接.
(1)求拋物線線的標(biāo)準(zhǔn)方程;
(2)問直線是否過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中, , , ,其中.
⑴ 求證:數(shù)列為等差數(shù)列;
⑵ 設(shè), ,數(shù)列的前項(xiàng)和為,若當(dāng)且為偶數(shù)時, 恒成立,求實(shí)數(shù)的取值范圍;
⑶ 設(shè)數(shù)列的前項(xiàng)的和為,試求數(shù)列的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com