【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應段的概率,并假設各年的年入流量相互獨立.
(1)求未來4年中,至多1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關系:
年入流量 | |||
發(fā)電量最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?
【答案】(1)0.9477;(2)8620, 2.
【解析】
試題(1)先求,,,再利用二項分布求解;(2)記水電站年總利潤為(單位:萬元)①安裝1臺發(fā)電機的情形.②安裝2臺發(fā)電機.③安裝3臺發(fā)電機,分別求出,比較大小,再確定應安裝發(fā)電機臺數(shù).
(1)依題意,,
,,
由二項分布,在未來4年中至多有1年入流量找過120的概率為:
.
(2)記水電站年總利潤為(單位:萬元)
①安裝1臺發(fā)電機的情形.
由于水庫年入流量總大于40,所以一臺發(fā)電機運行的概率為1,
對應的年利潤,.
②安裝2臺發(fā)電機.
當時,一臺發(fā)電機運行,此時,
因此,
當時,兩臺發(fā)電機運行,此時,
因此.由此得的分布列如下:
4200 | 10000 | |
0.2 | 0.8 |
所以.
③安裝3臺發(fā)電機.
依題意,當時,一臺發(fā)電機運行,此時,
因此;
當時,兩臺發(fā)電機運行,此時,
此時,
當時,三臺發(fā)電機運行,此時,
因此,
由此得的分布列如下:
34 | 9200 | 15000 | |
0.2 | 0.8 | 0.1 |
所以.
綜上,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機2臺.
科目:高中數(shù)學 來源: 題型:
【題目】有、、、四位貴賓,應分別對應坐在、、、四個席位上,現(xiàn)在這四人均未留意,在四個席位上隨便就座.
(1)求這四人恰好都坐在自己席位上的概率;
(2)求這四人恰好都沒坐在自己席位上的概率;
(3)求這四人恰好有位坐在自己席位上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了反映國民經(jīng)濟各行業(yè)對倉儲物流業(yè)務的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.
根據(jù)該折線圖,下列結論正確的是
A. 2016年各月的倉儲指數(shù)最大值是在3月份
B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大
D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務活動仍然較為活躍,經(jīng)濟運行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,圖①是棱長為1的小正方體,圖②,③是由這樣的小正方體擺放而成.按照這樣的方法繼續(xù)擺放,由上而下分別將第1層,第2層,…,第層的小正方體的個數(shù)記為,解答下列問題:
(1)按照要求填表:
1 | 2 | 3 | 4 | … | |
1 | 3 | 6 | _ | … |
(2)__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖),
(1)由圖中數(shù)據(jù)求a的值;
(2)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學生中,用分層抽樣的方法選取18人參加一項活動,則從身高在[140,150]內(nèi)的學生中選取的人數(shù)應為多少?
(3)估計這所小學的小學生身高的眾數(shù),中位數(shù)(保留兩位小數(shù))及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是定義在(-∞,+∞)上的奇函數(shù),且在[0,+∞)上為增函數(shù),
(1)求證:函數(shù)在(-∞,0)上也是增函數(shù);
(2)如果f()=1,解不等式-1<f(2x+1)≤0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的極坐標方程和的直角坐標方程;
(Ⅱ)直線與曲線分別交于第一象限內(nèi)的,兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“楊輝三角”是我國數(shù)學史上的一個偉大成就,是二項式系數(shù)在三角形中的一種幾何排列.如圖所示,去除所有為1的項,依此構成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前56項和為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com