【題目】對(duì)于數(shù)列,若對(duì)任意的也是數(shù)列中的項(xiàng),則稱(chēng)數(shù)列數(shù)列,已知數(shù)列滿(mǎn)足:對(duì)任意的,均有,其中表示數(shù)列的前項(xiàng)和.

1)求證:數(shù)列為等差數(shù)列;

2)若數(shù)列數(shù)列,,求的所有可能值;

3)若對(duì)任意的也是數(shù)列中的項(xiàng),求證:數(shù)列數(shù)列”.

【答案】1)證明見(jiàn)解析;(210、12、16;(3)證明見(jiàn)解析.

【解析】

1)已知關(guān)系,結(jié)合等差數(shù)列的定義,即可證明;

2)根據(jù)數(shù)列的定義,可推出公差的所有可能值,即可求出的所有可能值;

(3)由已知任意的,也是數(shù)列中的項(xiàng),得到與公差的關(guān)系,從而求得的通項(xiàng),即可得到證明.

1)由,,

,

,,

兩式相減得,

數(shù)列為等差數(shù)列;

(2)設(shè)的公差為,

,

由于數(shù)列數(shù)列的項(xiàng)

,

,

的可能值為,

的所有可能值;

3)設(shè),

,也是數(shù)列中的項(xiàng),

設(shè)中的第項(xiàng),則

,

中的第項(xiàng),

數(shù)列數(shù)列”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率,左,右頂點(diǎn)分別為A,B,經(jīng)過(guò)點(diǎn)F的直線與橢圓交于C,D兩點(diǎn)(與A,B不重合).

(1)求橢圓M的方程;

(2)的面積分別為,求|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)對(duì)任意的,恒成立,請(qǐng)求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,側(cè)棱底面, , ,且點(diǎn)分別為的中點(diǎn).

1)求證: 平面;

2求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為A,下頂點(diǎn)為B,過(guò)A、O、BO為坐標(biāo)原點(diǎn))三點(diǎn)的圓的圓心坐標(biāo)為

(1)求橢圓的方程;

(2)已知點(diǎn)Mx軸正半軸上,過(guò)點(diǎn)BBM的垂線與橢圓交于另一點(diǎn)N,若∠BMN=60°,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓,圓.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求圓,的極坐標(biāo)方程;

(2)設(shè),分別為,上的點(diǎn),若為等邊三角形,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),設(shè),若對(duì)所有的都有,則稱(chēng)互為零點(diǎn)相鄰函數(shù)”.若函數(shù)互為零點(diǎn)相鄰函數(shù),則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,與平面所成的角依次是,,依次是上的點(diǎn),其中.

1)求直線與平面所成的角(結(jié)果用反三角函數(shù)值表示);

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某自來(lái)水公司要在公路兩側(cè)鋪設(shè)水管,公路為東西方向,在路北側(cè)沿直線鋪設(shè)線路l1,在路南側(cè)沿直線鋪設(shè)線路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線將l1l2接通.已知AB = 60m,BC = 80m,公路兩側(cè)鋪設(shè)水管的費(fèi)用為每米1萬(wàn)元,穿過(guò)公路的EF部分鋪設(shè)水管的費(fèi)用為每米2萬(wàn)元,設(shè)EFB= α,矩形區(qū)域內(nèi)的鋪設(shè)水管的總費(fèi)用為W

1)求W關(guān)于α的函數(shù)關(guān)系式;

2)求W的最小值及相應(yīng)的角α

查看答案和解析>>

同步練習(xí)冊(cè)答案