{an}為首項是正數(shù)的等比數(shù)例,首n項和Sn=80,前2n項和S2n=6560,在前n項中數(shù)值最大的項為54,求通項an

答案:
解析:

  [分析]若求an,必先求a1和公比q,這樣就需列出關(guān)于a1和q的兩個方程.題目中所給條件中,“前n項和中數(shù)值最大者為54”如何利用?這就要考慮{an}這個數(shù)列究竟是遞增數(shù)列,遞減數(shù)列,還是常數(shù)數(shù)列或擺動數(shù)列.以下結(jié)論可供我們解題過程參考運用.

  在等比數(shù)列中

  

  

  [點評]各項均為正數(shù)的等比數(shù)列,當(dāng)公比大于1時,最大項在末位;當(dāng)公比在0與1之間時,則最大項為首項.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是以4為首項的正數(shù)數(shù)列,雙曲線an-1y2-anx2=an-1an的一個焦點坐標(biāo)為(0,
cn
)(n≥2)
,且c1=6,一條漸近線方程為y=
2
x

(1)求數(shù)列{cn}(n∈N*)的通項公式;
(2)試判斷:對一切自然數(shù)n(n∈N*),不等式
1
c1
+
2
c2
+
3
c3
+…+
n
cn
+
n
3•2n
2
3
是否恒成立?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線an-1y2-anx2=an-1an的焦點在y軸上,一條漸近線方程為y=
2
x
,其中{an}是以4為首項的正數(shù)數(shù)列,則數(shù)列{an}的通項公式是( �。�
A、an=2
n+3
2
B、an=21-n
C、an=4n-2
D、an=2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線an-1y2-anx2=an-1an的一個焦點為(0,
cn
)(n≥2)
,且c1=6,一條漸近線方程為y=
2
x
,其中{an}是以4為首項的正數(shù)數(shù)列,記Tn=a1c1+a2c2+…+ancn(n∈N*).
(1)求數(shù)列{cn}的通項公式;
(2)數(shù)列{cn}的前n項和為Sn,求
lim
n→∞
S
2
n
Tn
;
(3)若不等式
1
c1
+
2
c2
+…+
n
cn
+
n
3•2n
1
3
+loga(2x+1)(a>0,a≠1)
對一切自然數(shù)n(n∈N*)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}為首項是正數(shù)的等比數(shù)列,前n項和Sn=80,前2n項和S2n=6 560,在前n項中數(shù)值最大者為54,求通項an.

查看答案和解析>>

同步練習(xí)冊答案