【題目】如圖,在多面體中,正方形與梯形所在平面互相垂直,已知,.

(1)求證:平面;

(2)求平面與平面所成角的正弦值.

【答案】1)證明見解析(2

【解析】

1)由正方形的性質(zhì)及平面平面可得平面,,的中點(diǎn),連接,可證得,即可求證;

2)以為原點(diǎn),以所在直線為軸,軸,軸,建立空間直角坐標(biāo)系,由(1)可得為平面的一個(gè)法向量,再求得平面的一個(gè)法向量,進(jìn)而利用余弦定理求解即可.

1)證明:正方形,,

又平面平面,平面平面,平面,

平面,

平面,,

的中點(diǎn),連接,易得四邊形為正方形,,

,即,

,則平面.

2,,

平面,易知兩兩垂直,

為原點(diǎn),以所在直線為軸,軸,軸,建立空間直角坐標(biāo)系,如圖所示,

易得,則,,

由(1)得為平面的一個(gè)法向量,

為平面的一個(gè)法向量,則,,

不妨令,則,故,

令所求二面角為,則,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長(zhǎng)到原來的倍(橫坐標(biāo)不變),得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)曲線上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,,),使點(diǎn)、的距離都為?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為助力湖北新冠疫情后的經(jīng)濟(jì)復(fù)蘇,某電商平臺(tái)為某工廠的產(chǎn)品開設(shè)直播帶貨專場(chǎng).為了對(duì)該產(chǎn)品進(jìn)行合理定價(jià),用不同的單價(jià)在平臺(tái)試銷,得到如下數(shù)據(jù):

單價(jià)(元/件)

8

8.2

8.4

8.6

8.8

9

銷量(萬件)

90

84

83

80

75

68

1)根據(jù)以上數(shù)據(jù),求關(guān)于的線性回歸方程;

2)若該產(chǎn)品成本是4/件,假設(shè)該產(chǎn)品全部賣出,預(yù)測(cè)把單價(jià)定為多少時(shí),工廠獲得最大利潤(rùn)?

(參考公式:回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,其記載的日月歷法曰:陰陽之?dāng)?shù),日月之法,十九歲為一章,四章為一部,部七十六歲,二十部為一遂,遂千百五二十歲,.生數(shù)皆終,萬物復(fù)蘇,天以更元作紀(jì)歷,某老年公寓住有20位老人,他們的年齡(都為正整數(shù))之和恰好為一遂,其中年長(zhǎng)者已是奔百之齡(年齡介于90100),其余19人的年齡依次相差一歲,則年長(zhǎng)者的年齡為( )

A.94B.95C.96D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年某高校藝術(shù)類考試中,共有6位選手參加,其中3位女生,3位男生,現(xiàn)這6名考生依次出場(chǎng)進(jìn)行才藝展出,如果3位男生中任何2人都不能連續(xù)出場(chǎng),且女生甲不能排第一個(gè),那么這6名考生出場(chǎng)順序的排法種數(shù)為( )

A.108B.120C.132D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研團(tuán)隊(duì)對(duì)例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為名非吸煙患者中,重癥人數(shù)為人,重癥比例為.

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表;

2)根據(jù)(1)中列聯(lián)表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為新冠肺炎重癥與吸煙有關(guān)?

3)已知每例重癥患者平均治療費(fèi)用約為萬元,每例輕癥患者平均治療費(fèi)用約為萬元.根據(jù)(1)中列聯(lián)表數(shù)據(jù),分別求吸煙患者和非吸煙患者的平均治療費(fèi)用.(結(jié)果保留兩位小數(shù))

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱平面內(nèi)一點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),若直線所成角的最小值與直線和平面所成角的最大值相等,則滿足條件的點(diǎn)的軌跡是(

A.直線的一部分B.圓的一部分C.拋物線的一部分D.橢圓的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為4的正方形,中點(diǎn),邊上一動(dòng)點(diǎn),現(xiàn)將,分別沿,折起,使得,重合為點(diǎn),形成四棱錐,過點(diǎn)平面.①平面平面;②當(dāng)中點(diǎn)時(shí),三棱錐的體積為;③的垂心;④長(zhǎng)的取值范圍為 .則以上判斷正確的有______(填正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,∠A,2ABBCE,F分別是BC,AD的中點(diǎn).將四邊形DCEF沿著EF折起,使得平面ABEF⊥平面DCEF,得到三棱柱AFDBEC.

1)證明:DBEF

2)若AB2,求三棱柱AFDBEC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案