已知函數(shù)f(x)=9x-
1
3x
+1
,且f(a)=3,則f(-a)的值為
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)的解析式可得f(x)+f(-x)=2,整體求解可得.
解答: 解:函數(shù)f(x)=9x-
1
3x
+1
,可得f(x)+f(-x)=2,
∵f(a)=3,∴f(a)+f(-a)=2,
f(-a)=-1,
故答案為:-1
點評:本題考查了函數(shù)的奇偶性,方程的思想方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的二次項系數(shù)為正且f(2-x)=f(2+x).求不等式f(2-
1
2
x2)<f(-x2+6x-7)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件,分別求出相應橢圓的標準方程:
(1)焦點在y軸上,長軸是短軸的3倍且經(jīng)過點A(3,0);
(2)已知一個焦點是F(1,0),且短軸的兩個三等分點M,N與F構成正三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,若a1=1,a4=27.
(1)a3
(2)數(shù)列通項公式an
(3)數(shù)列{an}的前5項的和S5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
+
b
+
c
=
0
,且
a
c
的夾角為60°,|
b
|=
3
|
a
|,則cos<
a
,
b
>等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈R,求
x
x2+4
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,前三項分別為x、2x、5x-4,前n項和為Sn,且Sk=2550.
(1)求x和k的值;
(2)如果Tn=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,求Tn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若三條直線l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4不能圍成三角形,則實數(shù)m的取值最多有( 。
A、2個B、3個C、4個D、5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=[ax2+(a-1)2x+a-(a-1)2]ex  (其中a∈R).若x=0為f(x)的極值點.解不等式f(x)>(x-1)(
1
2
x2+x+1).

查看答案和解析>>

同步練習冊答案