某公司規(guī)定:對(duì)于小于或等于150件的訂購(gòu)合同,每件售價(jià)為200元,對(duì)于多于150件的訂購(gòu)合同,每超過(guò)一件,則每件的售價(jià)比原來(lái)減少1元,則使公司的收益最大時(shí)應(yīng)該訂購(gòu)的合同件數(shù)是(   )
A.150
B.175
C.200
D.225
B
設(shè)x表示銷售的件數(shù),R表示公司的收益,則R等于每件的售價(jià)x×銷售件數(shù),當(dāng)x>150時(shí),則R=[200-(x-150)]x=350x-x2為公司收益,先求R′(x)=350-2x,令R′(x)=0,得x=175時(shí),R有最大值.最大收益為R=350×175-(175)2=30625,而當(dāng)一份合同訂購(gòu)的件數(shù)超過(guò)175時(shí),則公司的收益開始減小,故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

根據(jù)統(tǒng)計(jì)資料,某工藝品廠的日產(chǎn)量最多不超過(guò)20件,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤(rùn)日正品贏利額日廢品虧損額)
(1)將該車間日利潤(rùn)(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?最大日利潤(rùn)是幾千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,函數(shù)
(Ⅰ)當(dāng)時(shí),
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在區(qū)間上有解,求的取值范圍;
(Ⅱ)已知曲線在其圖象上的兩點(diǎn),)處的切線分別為.若直線平行,試探究點(diǎn)與點(diǎn)的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知a∈R,函數(shù)
(1)若a=1,求曲線在點(diǎn)(2,f (2))處的切線方程;
(2)若|a|>1,求在閉區(qū)間[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若對(duì)任意恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)上的最小值是2 ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)的值為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P(1,2)是曲線y=2x2上一點(diǎn),則P處的瞬時(shí)變化率為   (    )
A.2B.4 C.6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù),且,則( )
A.0B.-1C.3D.-6

查看答案和解析>>

同步練習(xí)冊(cè)答案