(2013•汕尾二模)設(shè)等比數(shù)列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N*)
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列(如:在a1與a2之間插入1個數(shù)構(gòu)成第一個等差數(shù)列,其公差為d1;在a2與a3之間插入2個數(shù)構(gòu)成第二個等差數(shù)列,其公差為d2,…以此類推),設(shè)第n個等差數(shù)列的和是An.是否存在一個關(guān)于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數(shù)列d1,d2,d3,…,dn,…,這個數(shù)列中是否存在不同的三項dm,dk,dp(其中正整數(shù)m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項;若不存在,說明理由.
分析:(1)n≥2時,由an+1=2Sn+2,再寫一式,兩式相減,即可求得數(shù)列{an}的通項公式;
(2)先求得dn,從而可得第n個等差數(shù)列的和An,由此可得結(jié)論;
(3)利用反證法.假設(shè)在數(shù)列{dn}中存在dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列,由此可得m=k=p這與題設(shè)矛盾.
解答:解:(1)n≥2時,由an+1=2Sn+2,①;
得an=2Sn-1+2,②;
兩式相減可得:an+1-an=2an,∴an+1=3an,即數(shù)列{an}的公比為3
∵n=1時,a2=2S1+2,∴3a1=2a1+2,解得a1=2,
∴an=2×3n-1
(2)由(1)知an=2×3n-1,an+1=2×3n,
因為an+1=an+(n+1)dn,所以dn=
4×3n-1
n+1

第n個等差數(shù)列的和是An=(n+2)an+
(n+2)(n+1)
2
×
4×3n-1
n+1
=4(n+2)×3n-1=(n+2)(n+1)dn,
∴存在一個關(guān)于n的多項式g(n)=(n+2)(n+1),使得An=g(n)dn對任意n∈N*恒成立;
(3)假設(shè)在數(shù)列{dn}中存在dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列
則dk2=dmdp,即(
4×3k-1
k+1
2=
4×3m-1
m+1
×
4×3p-1
p+1

因為m,k,p成等差數(shù)列,所以m+p=2k①
上式可以化簡為k2=mp②
由①②可得m=k=p這與題設(shè)矛盾
所以在數(shù)列{dn}中不存在三項dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列.
點評:本題考查數(shù)列通項公式的求解,考查等差數(shù)列的求和,考查反證法思想,確定數(shù)列的通項,利用數(shù)列的求和公式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)cos150°的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(Ⅰ)求證:DA⊥平面PAB;
(Ⅱ) 求直線PC與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第23個圖案中需用黑色瓷磚
100
100
塊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數(shù)記為f(n);
①f(3)=
7
7
;
②f(n)=
2n-1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)已知正方體被過一面對角線和它對面兩棱中點的平面截去一個三棱臺后的幾何體的主(正)視圖和俯視圖如下,則它的左(側(cè))視圖是(  )

查看答案和解析>>

同步練習(xí)冊答案