二面角α-aβ的值為(0°<180°),直線l⊥α,判斷直線l與平面β的位置關(guān)系,并證明你的結(jié)論.

答案:
解析:

  解析:分兩種情況,90°90°

  當(dāng)90°時,lβlβ,這個結(jié)論可用反證法證明;

  當(dāng)90°時,l必與β相交,也可用反證法證明.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是直線AC,AD上的點(diǎn),且
AE
AC
=
AF
AD
=λ.
(1)求二面角B-CD-A平面角的余弦值
(2)當(dāng)λ為何值時,平面BEF⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐中,PA⊥平面ABCD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b.
(I)求證:平面PBD⊥平面PAC;
(II)設(shè)AC與BD交于點(diǎn)O,M為OC中點(diǎn),若二面角O-PM-D的正切值為2
6
,求a:b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的BC邊上的高線為AD,BD=a,CD=b,且a<b,將△ABC沿AD折成大小為θ的二面角B-AD-C,若cosθ=
a
b
,則此時△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是正△ABC所在平面外一點(diǎn),P在△ABC上的射影是△ABC的中心O,PA與底面所成角為β,側(cè)面PBC與底面成二面角為α,則tanα·cotβ的值為(   )

A.2               B.3              C.              D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市淮陰中學(xué)高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

已知四棱錐中,PA⊥平面ABCD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b.
(I)求證:平面PBD⊥平面PAC;
(II)設(shè)AC與BD交于點(diǎn)O,M為OC中點(diǎn),若二面角O-PM-D的正切值為,求a:b的值.

查看答案和解析>>

同步練習(xí)冊答案