某單位為了參加上級組織的普及消防知識競賽,需要從兩名選手中選出一人參加.為此,設(shè)計了一個挑選方案:選手從6道備選題中一次性隨機(jī)抽取3題.通過考察得知:6道備選題中選手甲有4道題能夠答對,2道題答錯;選手乙答對每題的概率都是,且各題答對與否互不影響.設(shè)選手甲、選手乙答對的題數(shù)分別為ξ,η.

(1)寫出ξ的概率分布列,并求出E(ξ),E(η);

(2)求D(ξ),D(η).請你根據(jù)得到的數(shù)據(jù),建議該單位派哪個選手參加競賽?

 

【答案】

(1)根據(jù)題意,由于從6道備選題中一次性隨機(jī)抽取3題,那么對于6道題中,甲有4道題能夠答對,2道題答錯;因此可知最多都答對,最少答對1題,故可知

ξ的概率分布列為:

(2)該單位派甲參加競賽.

【解析】

試題分析:解:(1)ξ的概率分布列為:

所以

P(η=0)=;P(η=1)=;P(η=2)=;

P(η=3)=.所以,.

或由題意,η~B(3,),E(η)=3×=2  7分

(2)D(ξ)=

由η~B(3,),D(η)=3××.可見,E(ξ)=E(η),D(ξ)<D(η),

因此,建議該單位派甲參加競賽. 14分

考點:分布列和期望

點評:主要會考查了分布列的求解和運用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某單位為了參加上級組織的普及消防知識競賽,需要從兩名選手中選出一人參加.為此,設(shè)計了一個挑選方案:選手從6道備選題中一次性隨機(jī)抽取3題.通過考察得知:6道備選題中選手甲有4道題能夠答對,2道題答錯;選手乙答對每題的概率都是
23
,且各題答對與否互不影響.設(shè)選手甲、選手乙答對的題數(shù)分別為ξ,η.
(1)寫出ξ的概率分布列(不要求計算過程),并求出Eξ,Eη;
(2)求Dξ,Dη.請你根據(jù)得到的數(shù)據(jù),建議該單位派哪個選手參加競賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位為了參加上級組織的普及消防知識競賽,需要從兩名選手中選出一人參加.為此,設(shè)計了一個挑選方案:選手從6道備選題中一次性隨機(jī)抽取3題.通過考察得知:6道備選題中選手甲有4道題能夠答對,2道題答錯;選手乙答對每題的概率都是數(shù)學(xué)公式,且各題答對與否互不影響.設(shè)選手甲、選手乙答對的題數(shù)分別為ξ,η.
(1)寫出ξ的概率分布列(不要求計算過程),并求出Eξ,Eη;
(2)求Dξ,Dη.請你根據(jù)得到的數(shù)據(jù),建議該單位派哪個選手參加競賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市余姚中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某單位為了參加上級組織的普及消防知識競賽,需要從兩名選手中選出一人參加.為此,設(shè)計了一個挑選方案:選手從6道備選題中一次性隨機(jī)抽取3題.通過考察得知:6道備選題中選手甲有4道題能夠答對,2道題答錯;選手乙答對每題的概率都是,且各題答對與否互不影響.設(shè)選手甲、選手乙答對的題數(shù)分別為ξ,η.
(1)寫出ξ的概率分布列(不要求計算過程),并求出Eξ,Eη;
(2)求Dξ,Dη.請你根據(jù)得到的數(shù)據(jù),建議該單位派哪個選手參加競賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市萬里國際學(xué)校高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某單位為了參加上級組織的普及消防知識競賽,需要從兩名選手中選出一人參加.為此,設(shè)計了一個挑選方案:選手從6道備選題中一次性隨機(jī)抽取3題.通過考察得知:6道備選題中選手甲有4道題能夠答對,2道題答錯;選手乙答對每題的概率都是,且各題答對與否互不影響.設(shè)選手甲、選手乙答對的題數(shù)分別為ξ,η.
(1)寫出ξ的概率分布列(不要求計算過程),并求出Eξ,Eη;
(2)求Dξ,Dη.請你根據(jù)得到的數(shù)據(jù),建議該單位派哪個選手參加競賽?

查看答案和解析>>

同步練習(xí)冊答案