已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}{-10,-6,-2,0,1,3,4,16}.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對(duì)一切n∈N*都成立?若存在,求出bn;若不存在,說(shuō)明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對(duì)一切n∈N*都成立?若存在,求出bn;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西師大附中高三5月模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}{-10,-6,-2,0,1,3,4,16}.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對(duì)一切n∈N*都成立?若存在,求出bn;若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建師大附中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對(duì)一切n∈N*都成立?若存在,求出bn;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對(duì)一切n∈N*都成立?若存在,求出bn;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省杭州四中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對(duì)一切n∈N*都成立?若存在,求出bn;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案