數(shù)學(xué)英語物理化學(xué) 生物地理
數(shù)學(xué)英語已回答習(xí)題未回答習(xí)題題目匯總試卷匯總
已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點(diǎn),求弦的長.
(1)(2)-1(3)
【解析】
試題分析:解:(1)設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013071812493613291952/SYS201307181250246268853183_DA.files/image004.png">,由拋物線的定義得,又,所以,因此,解得,從而拋物線的方程為.
(2)由(1)知點(diǎn)的坐標(biāo)為,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013071812493613291952/SYS201307181250246268853183_DA.files/image012.png">的角平分線與軸垂直,所以可知的傾斜角互補(bǔ),即的斜率互為相反數(shù)
設(shè)直線的斜率為,則,由題意,
把代入拋物線方程得,該方程的解為4、,
由韋達(dá)定理得,即,同理,
所以,
(3)設(shè),代入拋物線方程得,,
考點(diǎn):拋物線的方程
點(diǎn)評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點(diǎn)時(shí),常用到根與系數(shù)的關(guān)系式:()。
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)為拋物線C上的一點(diǎn),且的外接圓圓心到準(zhǔn)線的距離為.
(I)求拋物線C的方程;
(II)若圓F的方程為,過點(diǎn)P作圓F的2條切線分別交軸于點(diǎn),求面積的最小值時(shí)的值.
科目:高中數(shù)學(xué) 來源:2014屆海南省高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知拋物線的焦點(diǎn)為,點(diǎn),在拋物線上,且, 則有 ( )
A. B.
C. D.
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州市高三調(diào)研考試?yán)頂?shù) 題型:選擇題
已知拋物線的焦點(diǎn)為,關(guān)于原點(diǎn)的對稱點(diǎn)為過作軸的垂線交拋物線于兩點(diǎn).有下列四個(gè)命題:①必為直角三角形;②不一定為直角三角形;③直線必與拋物線相切;④直線不一定與拋物線相切.其中正確的命題是
(A)①③ (B)①④ (C)②③ (D)②④
科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題
已知拋物線的焦點(diǎn)為F,準(zhǔn)線為,經(jīng)過F且斜率為的直線與拋物線在軸上方的部分相交于點(diǎn)A,且AK,垂足為K,則的面積是( �。�
A 4 B C D 8
科目:高中數(shù)學(xué) 來源:2012屆海南省高二年級第一學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:選擇題
已知拋物線的焦點(diǎn)為,點(diǎn),在拋物線上,且,則有( )
百度致信 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)