分析 根據(jù)函數(shù)奇偶性,解出奇函數(shù)f(x)和偶函數(shù)g(x)的表達(dá)式,將等式af(x)+g(2x)=0,令t=2x-2-x,則t>0,通過(guò)變形可得a=t+2t,討論出右邊在x∈[1,2]的最大值,可以得出實(shí)數(shù)a的取值范圍.
解答 解:解:∵f(x)為定義在R上的奇函數(shù),g(x)為定義在R上的偶函數(shù),
∴f(-x)=-f(x),g(-x)=g(x),
又∵由f(x)+g(x)=2-x,結(jié)合f(-x)+g(-x)=-f(x)+g(x)=2x,
∴f(x)=-12(2x-2-x),g(x)=12(2x+2-x).
等式af(x)+g(2x)=0,化簡(jiǎn)為-a2(2x-2-x)+12(22x+2-2x)=0.
∵x∈[1,2],∴32≤2x-2-x≤154,
令t=2x-2-x,則t>0,因此將上面等式整理,得:a=t+2t,
函數(shù)h(t)=t+2t在[32,154]遞增,176≤t+2t≤25760,
則實(shí)數(shù)a的取值范圍是[176,25760],
故答案為:[176,25760].
點(diǎn)評(píng) 題以指數(shù)型函數(shù)為載體,考查了函數(shù)求表達(dá)式以及不等式恒成立等知識(shí)點(diǎn),屬于難題.合理地利用函數(shù)的基本性質(zhì),再結(jié)合換元法和基本不等式的技巧,是解決本題的關(guān)鍵.屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (−12,12) | B. | (-1,1) | C. | (12,−12) | D. | (1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 13 | B. | 12 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [−5π6,π6] | B. | [−π3,π6] | C. | [−5π12,π12] | D. | [π12,7π12] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com