已知兩點(diǎn)P1(4,9)和P2(6,3),求以P1P2為直徑的圓的方程,并試判點(diǎn)M(6,9)是否在該圓上.
考點(diǎn):圓的標(biāo)準(zhǔn)方程,點(diǎn)與圓的位置關(guān)系
專題:直線與圓
分析:由題意可得圓心P(5,6),半徑
1
2
|P1P2|的值,可得圓的標(biāo)準(zhǔn)方程.再根據(jù)點(diǎn)M(6,9)到圓心P(5,6)的距離正好等于半徑,可得M在圓上.
解答: 解:由題意可得圓心為線段P1P2的中點(diǎn)P(5,6),半徑為
1
2
|P1P2|=
10

故圓的標(biāo)準(zhǔn)方程為 (x-5)2+(y-6)2=10.
由于點(diǎn)M(6,9)到圓心P(5,6)的距離為
10
,故點(diǎn)M在圓上.
點(diǎn)評:本題主要考查求圓的標(biāo)準(zhǔn)方程的方法,求出圓心坐標(biāo)和半徑的值,是解題的關(guān)鍵;還考查了點(diǎn)和圓的位置關(guān)系的判定方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|,g(x)=-|x+3|+m,若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象上,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O與離心率為
3
2
的橢圓T:
x2
a2
+
y2
b2
=1(a>b>0)相切于點(diǎn)M(0,1).
(1)求橢圓T與圓O的方程;
(2)過點(diǎn)M引兩條互相垂直的兩直線l1、l2與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合).
①若P為橢圓上任一點(diǎn),記點(diǎn)P到兩直線的距離分別為d1、d2,求d12+d22的最大值;
②若3
MA•
MC
=4
MB
MD
,求l1與l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,1,0),B(0,3,1),C(2,2,3),則
AC
AB
上的正投影的數(shù)量為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序,則輸出結(jié)果S的值為( 。
A、6B、14C、10D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)(x,y)滿足的不等式組
x≥0
y≥x
kx-y+1≥0
(k是常數(shù))所表示的平面區(qū)域的邊界是一個(gè)直角三角形,則x-3y的最小值為( 。
A、-3或0B、-或0
C、-3D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列{an}的前n項(xiàng)和,給出如下兩個(gè)命題:命題p:{an}是等差數(shù)列;命題q:等式
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
kn+b
a1an+1
對任意的n(n∈N*)恒成立,其中k,b是常數(shù).
(1)若p是q的充分條件,求k,b的值;
(2)對于(1)中的k與b,問p是否為q的必要條件,請說明理由;
(3)若p為真命題,對于給定的正整數(shù)n(n>1)和正數(shù)M,數(shù)列{an}滿足條件a12+an+12≤M,試求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較大。(
1
3
)-0.25
 
(
1
3
)-0.27
(在空格處填上“<”或“>”號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={x|x2≥4},P={x|
x-3
x+1
≤0},則M∪P=
 

查看答案和解析>>

同步練習(xí)冊答案