已知空間三點(diǎn)A(1,2,3),B(5,4,7),C(3,5,5),則
|AB|
|CB|
=
 
考點(diǎn):空間兩點(diǎn)間的距離公式
專題:空間位置關(guān)系與距離
分析:直接利用空間兩點(diǎn)間的距離公式求解即可.
解答: 解:空間三點(diǎn)A(1,2,3),B(5,4,7),C(3,5,5),
所以
|CB|
|AB|
=
(3-5)2+(5-4)2+(5-7)2
(1-5)2+(2-4)2+(3-7)2
=
3
6
=
1
2
,
所以
|AB|
|CB|
=2.
故答案為:2.
點(diǎn)評(píng):本題考查空間兩點(diǎn)間的距離公式的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x+1)lnx-x+1.
(1)求曲線在(1,f(1))處的切線方程;
(2)證明:0<x<1時(shí)f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的動(dòng)點(diǎn)R(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線RA、RB斜率分別為k1、k2,且k1•k2=-
3
4
,設(shè)動(dòng)點(diǎn)R的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)S(4,0)的直線與曲線C交于M,N兩點(diǎn),過點(diǎn)M作MQ⊥x軸,交曲線C于點(diǎn)Q.求證:直線NQ過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-2x2+7x-6的圖象與直線x=0,y=0的所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(2x+
π
3
)-1,x∈[0,
π
3
]的值域?yàn)閇-1,1],當(dāng)y取最大值時(shí),x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,a=4,c=
13
,sinA=4sinB,則C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為直線y=-
4
3
x+1的傾斜角的一半且過點(diǎn)(3,-2)的直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+ax,x≤1
2ax-5,x>1
,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①函數(shù)y=2cos(2x+
π
6
)圖象的一個(gè)對(duì)稱中心為(
π
6
,0);
②函數(shù)y=sin(
1
2
x-
π
6
)在區(qū)間[-
π
3
,
11
6
π]上的值域?yàn)閇-
3
2
2
2
];
③函數(shù)y=cosx的圖象可由函數(shù)y=sin(x+
π
4
)的圖象向右平移
π
4
個(gè)單位得到;
④若方程sin(2x+
π
3
)-a=0在區(qū)間[0,
π
2
]上有兩個(gè)不同的實(shí)數(shù)解x1,x2,則x1+x2=
π
6
.其中正確命題的序號(hào)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案