【題目】已知圓,圓心為,定點(diǎn),P為圓上一點(diǎn),線段上一點(diǎn)N滿足,直線上一點(diǎn)Q,滿足.

(Ⅰ) 求點(diǎn)Q的軌跡C的方程;

(Ⅱ) O為坐標(biāo)原點(diǎn), 是以為直徑的圓,直線相切,并與軌跡C交于不同的兩點(diǎn)A,B. 當(dāng)且滿足時,求△OAB面積S的取值范圍.

【答案】(Ⅰ).(Ⅱ).

【解析】試題分析:(Ⅰ)直接根據(jù)已知條件結(jié)合橢圓的定義求出曲線的方程.

(Ⅱ)利用直線和曲線的位置關(guān)系建立方程組,進(jìn)一步利用一元二次方程根和系數(shù)的關(guān)系建立關(guān)系式,進(jìn)一步求出參數(shù)的取值范圍.

試題解析:

(Ⅰ)∵

∴ N為的中點(diǎn)

∴ QN為線段的中垂線

∴由橢圓的定義可知Q的軌跡是以為焦點(diǎn),長軸長為的橢圓,

設(shè)橢圓的標(biāo)準(zhǔn)方程為,

,

.

∴點(diǎn)Q的軌跡C的方程為.

(Ⅱ)∵圓O與直線相切,

,即

,消去y整理得.

∵直線與橢圓交于兩個不同點(diǎn),

,

代入上式,可得,

設(shè),

,

,

,

,解得.

滿足.

,

設(shè),則.

,

故△OAB面積S的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB,CD是圓O中兩條互相垂直的直徑,兩個小圓與圓O以及AB,CD均相切,則往圓O內(nèi)投擲一個點(diǎn),該點(diǎn)落在陰影部分的概率為(
A.12﹣8
B.3﹣2
C.8﹣5
D.6﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率為,左、右焦點(diǎn)分別為

(1)求橢圓的方程;

(2)若直線與橢圓交于A,B兩點(diǎn),與以為直徑的圓交于C,D兩點(diǎn),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4sincos x+.

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;

(2)若函數(shù)g(x)=f(x)-m區(qū)間在上有兩個不同的零點(diǎn)x1,x2,求實(shí)數(shù)m的取值范圍,并計(jì)算tan(x1+x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的動直線與拋物線相交于兩點(diǎn).當(dāng)直線的斜率是時,.

(1)求拋物線的方程;

(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=2sin(π-x)sin x-(sin x-cos x)2.

(1)f(x)的單調(diào)遞增區(qū)間;

(2)y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2(縱坐標(biāo)不變),再把得到的圖象向左平移個單位,得到函數(shù)y=g(x)的圖象,g的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小值為

⑴設(shè),求證: 上單調(diào)遞增;

⑵求證: ;

⑶求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線方程C:.

(1)當(dāng)時,求圓心和半徑;

(2)若曲線C表示的圓與直線l: 相交于M,N,且,求m的值.

查看答案和解析>>

同步練習(xí)冊答案