要得到函數(shù)y=cos(
x
2
-
π
4
)
的圖象,只需將函數(shù)y=sin
x
2
的圖象上所有點(  )
A、向左平移
π
2
個單位縱坐標不變
B、向左平移
π
4
個單位縱坐標不變
C、向右平移
π
2
個單位縱坐標不變
D、向右平移
π
4
個單位縱坐標不變
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:將函數(shù)y=sin
x
2
的圖象上所有點向左平移
π
2
個單位縱坐標不變,
可得函數(shù)y=sin
1
2
(x+
π
2
)=sin(
x
2
+
π
4
)=cos(
π
4
-
x
2
)=cos(
x
2
-
π
4
)的圖象,
故選:A.
點評:本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x-1)的定義域是( 。
A、{x∈R|x>1}
B、{x∈R|x<1}
C、{x∈R|x≥1}
D、{x∈R|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減,且a=f(-1),b=f(log24),則實數(shù)a,b的大小關(guān)系時( 。
A、a<bB、a=b
C、a>bD、不能比較

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2+2x+4y-2=0上到直線x+y+1=0的距離為
2
2
的點個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一橢圓
x2
a2
+
y2
b2
=1
(a>b>0),焦距為2
10
,若一雙曲線與橢圓共焦點,且它的實軸比橢圓的長軸短8,雙曲線的離心率與橢圓的離心率之比為5:1,求橢圓和雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(2x+
π
4
)
,則它的一條對稱軸方程為( 。
A、x=-
π
8
B、x=0
C、x=
π
8
D、x=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-1的圖象一定過點( 。
A、(0,1)
B、(1,1)
C、(1,0)
D、(0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間圖形A-BCDE中,AB⊥平面BCDE,底面BCDE是直角梯形,且∠CBE=90°,BC∥DE,AB=DE=BE=
1
2
BC=1,點C在平面ADE內(nèi)的射影為點F,試求異面直線BF與CD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程
x2
4-t
+
y2
t-1
=1所表示的曲線為焦點在x軸上的橢圓,命題q:關(guān)于實數(shù)t的不等式t2-2at-1<0成立
(1)若命題p為真,求實數(shù)t的取值范圍
(2)若命題p是命題q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案