【題目】已知中心在坐標原點、焦點在x軸上的橢圓,它的離心率為,且與直線x+y-1=0相交于M、N兩點,若以MN為直徑的圓經(jīng)過坐標原點,求橢圓的方程.
【答案】
【解析】試題分析:設橢圓方程(a>b>0),依題意橢圓方程可轉化為,與直線x+y﹣1=0聯(lián)立,設M(x1,y1)、N(x2,y2),利用OM⊥ON可得x1x2+y1y2=0,利用韋達定理可得到關于b的關系式,從而可求得b2與a2.
試題解析:
設橢圓方程為+=1(a>b>0),
∵e=,∴a2=4b2,即a=2b.
∴橢圓方程為+=1.
把直線方程代入并化簡,得5x2-8x+4-4b2=0.
設M(x1,y1)、N(x2,y2),則
x1+x2=,x1x2= (4-4b2).
∴y1y2=(1-x1)(1-x2)
=1-(x1+x2)+x1x2= (1-4b2).
由于OM⊥ON,∴x1x2+y1y2=0.
解得b2=,a2=.
∴橢圓方程為x2+y2=1.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)求的單調區(qū)間;
(2)設函數(shù),若存在,對任意的,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83,則x+y的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有兩個分類變量x與y,其一組觀測值如下面的2×2列聯(lián)表所示:
y1 | y2 | |
x1 | a | 20-a |
x2 | 15-a | 30+a |
其中a,15-a均為大于5的整數(shù),則a取何值時,在犯錯誤的概率不超過0.1的前提下認為x與y之間有關系?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面內三個向量: =(3,2), =(﹣1,2), =(4,1)
(1)若( +k )∥(2 ﹣ ),求實數(shù)k的值;
(2)設 =(x,y),且滿足( + )⊥( ﹣ ),| ﹣ |= ,求 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調減區(qū)間;
(2)已知△ABC的三個內角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( ﹣ )= ,且sinB+sinC= ,求bc的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:不等式(m-1)x2+(m-1)x+2>0的解集是R,命題q:sin x+cos x>m.如果對于任意的x∈R,命題p是真命題且命題q為假命題,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四面體的頂點分別在兩兩垂直的三條射線上,在下列命題中,錯誤的是( )
A. 四面體是正三棱錐 B. 直線與平面相交 C. 異面直線和所成角是 D. 直線與平面所成的角的正弦值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】東莞市某高級中學在今年4月份安裝了一批空調,關于這批空調的使用年限 (單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統(tǒng)計資料如下:
使用年限 (年) | 1 | 2 | 3 | 4 | 5 |
維護費用(萬元) | 6 | 7 | 7.5 | 8 | 9 |
請根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護費用關于的線性回歸方程;
若規(guī)定當維護費用超過13.1萬元時,該批空調必須報廢,試根據(jù)(1)的結論求該批空調使用年限的最大值.
參考公式:最小二乘估計線性回歸方程中系數(shù)計算公式:
, ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com