在三棱錐A-BCD中,平面ABD⊥平面BCD,∠BDC=90°,E、F分別是AD、BC的中點,若EF=CD,則EF與平面ABD所成的角為________.

30°
分析:要求線面角,關鍵是尋找平面的垂線. 利用面面垂直,易得平面的垂線,從而得解.
解答:取BD的中點O,連接OE,OF
∵F是BC的中點,∴OF∥CD
∵∠BDC=90°,∴OF⊥BD
∵平面ABD⊥平面BCD
∴∠OEF 為EF與平面ABD所成的角
∵EF=CD
∴OF=
∴∠OEF=30°
∴EF與平面ABD所成的角為30°
故答案為30°
點評:本題的考點是直線與平面所成的角,主要考查線面角,關鍵是尋找平面的垂線.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且長度均為1,E為BC中點,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐A-BCD中,AB=4,CD=2,且異面直線AB、CD所成的角為60°,若M、N分別是AD、BC的中點,則MN=
3
7
3
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•渭南三模)在三棱錐A-BCD中,BD=BC=1,BD⊥BC,DE⊥AB,AD=2,AD⊥平面BCD.
(Ⅰ)求證:DE⊥平面ABC;
(Ⅱ)求平面BAC與平面DAC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜
邊,且AD=
3
,BD=CD=1,另一個側(cè)面ABC是正三角形.
(1)當正視圖方向與向量
CD
的方向相同時,畫出三棱錐A-BCD的三視圖;(要求標出尺寸)
(2)求二面角B-AC-D的余弦值;
(3)在線段AC上是否存在一點E,使ED與平面BCD成30°角?若存在,確定點E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點,且MN=PQ.
(1)求證:四邊形MNPQ為平行四邊形;
(2)試在直線AC上找一點F,使得MF⊥AD.

查看答案和解析>>

同步練習冊答案