17.已知等比數(shù)列{an}滿足an>0,且a5•a2n-5=22n(n≥3),求數(shù)列{log2an}的前n項(xiàng)和Sn

分析 由數(shù)列{an}為等比數(shù)列且a5•a2n-5=22n(n≥3),可得$a_n^2={2^{2n}}$,又an>0,可得an.再利用對(duì)數(shù)的運(yùn)算性質(zhì)、等差數(shù)列的求和公式即可得出.

解答 解:由數(shù)列{an}為等比數(shù)列且a5•a2n-5=22n(n≥3),可得$a_n^2={2^{2n}}$,
又an>0,所以${a_n}={2^n}$.
則${S_n}={log_2}{a_1}+{log_2}{a_2}+…+{log_2}{a_n}={log_2}({a_1}{a_2}…{a_n})={log_2}{2^{1+2+…+n}}$
=1+2+…+n=$\frac{n(n+1)}{2}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,點(diǎn)C在以AB為直徑的圓O上,PA垂直與圓O所在平面,G為△AOC的垂心.
(1)求證:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,點(diǎn)Q在線段PA上,且PQ=2QA,求三棱錐P-QGC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的漸近線將圓x2+y2-2x-4y+4=0平分,則雙曲線的離心率為( 。
A.3B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.12B.14C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ax+$\frac{x-2}{x-1}$(a>1),用反證法證明f(x)=0沒(méi)有負(fù)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,}&{x<0}\\{\frac{1}{x},}&{x>0}\end{array}\right.$的圖象上存在不同的兩點(diǎn)A、B,使得曲線y=f(x)在這兩點(diǎn)處的切線重合,則實(shí)數(shù)a的取值范圍是(  )
A.($\frac{1}{4}$,+∞)B.(2,+∞)C.(-∞,2)D.(-1,$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在封閉直三棱柱ABC-A1B1C1內(nèi)有一個(gè)體積為V的球,若AB⊥BC,AB=15,BC=8,AA1=5,則V的最大值是( 。
A.$\frac{9π}{2}$B.$\frac{125π}{6}$C.$\frac{32π}{3}$D.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某企業(yè)想通過(guò)做廣告來(lái)提高銷售額,經(jīng)預(yù)測(cè)可知本企業(yè)產(chǎn)品的廣告費(fèi)x(單位:百萬(wàn)元)與銷售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
由表中的數(shù)據(jù)得線性回歸方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=6.5,由此預(yù)測(cè)當(dāng)廣告費(fèi)為7百萬(wàn)元時(shí),銷售額為6300萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=x3  的切線的斜率為12,則這樣的切線有( 。
A.1條B.2條C.多余2條D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案