【題目】為保護(hù)環(huán)境,某單位采用新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品。已知該單位每月的處理量最多不超過300噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系式可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為300元。

1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?

2)要保證該單位每月不虧損,則每月處理量應(yīng)控制在什么范圍?

【答案】1時,才能使每噸的平均處理成本最低;(2)當(dāng)時,該單位每月不虧損.

【解析】

(1) 二氧化碳的每噸平均處理成本為,由均值不等式求得結(jié)果;(2結(jié)合二次函數(shù)的性質(zhì)以及題意得到結(jié)果.

1)由題意可知,二氧化碳的每噸平均處理成本為

因?yàn)?/span>,當(dāng)且僅當(dāng),即時,才能使每噸的平均處理成本最低;

2)設(shè)該單位每月獲利為S(元),則

,

由題意可知,所以當(dāng)時,該單位每月不虧損.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的個數(shù)是(

①正三棱錐的頂點(diǎn)在底面的射影到底面各頂點(diǎn)的距離相等;

②有兩個側(cè)面是矩形的棱柱是直棱柱;

③兩個底畫平行且相似的多面體是棱臺;

④底面是正三角形,其余各面都是等腰三角形的三棱錐一定是正三棱錐.

A.0B.1C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解該校多媒體教學(xué)普及情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該校50名教師,他們的年齡頻數(shù)及使用多媒體教學(xué)情況的人數(shù)分布如下表:

(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為以40歲為分界點(diǎn)對是否經(jīng)常使用多媒體教學(xué)有差異?

附:,.

(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用多媒體的教師中選出6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人年齡在30-39歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為參數(shù),且.

(Ⅰ)當(dāng)時,判斷函數(shù)是否有極值.

(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍.

)若對(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得重合,連結(jié),如圖2.

(1)證明圖2中的四點(diǎn)共面,且平面平面

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下不等式中錯誤的是( 。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐中,E,F分別為棱VA,VC的中點(diǎn).

(1)求證:EF平面ABCD

(2)求證:平面VBD平面BEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗(yàn),其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).

1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);

2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案