設橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點是同一個正三角形的頂點,焦點與橢圓上的點的最短距離為
3
,求這個橢圓的方程和離心率.
考點:橢圓的標準方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:當焦點在x軸時,設橢圓方程為
x2
a2
+
y2
b2
=1,a>b>0,由題意知a=2c,a-c=
3
,由此能求出橢圓方程和離心率e=
1
2
.同理,當焦點在y軸時,由樣能求出橢圓方程和離心率.
解答: 解:當焦點在x軸時,設橢圓方程為
x2
a2
+
y2
b2
=1,a>b>0,
由題意知a=2c,a-c=
3
,
解得a=2
3
,c=
3

所以b2=9,所求的橢圓方程為
x2
12
+
y2 
9
=1.離心率e=
1
2

同理,當焦點在y軸時,
所求的橢圓方程為
x2
9
+
y2
12
=1.離心率e=
1
2
點評:本題考查橢圓方程的求法,是基礎題,解題時要認真審題,注意橢圓性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設x,y∈R,則xy<0是|x-y|=|x|+|y|成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充分且必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公比為q的等比數(shù)列{an}的前n項和為Sn,若a1<0且{Sn}單調(diào)遞減,則(  )
A、-1<q<0B、q<-1
C、q>1D、q>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x+m
2x+1
為奇函數(shù),m∈R.
(1)求m的值;
(2)利用定義判斷并證明函數(shù)f(x)的單調(diào)性,并求出f(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,公差d>0,a2•a3=45,a1+a4=14
(1)求數(shù)列{an}的通項公式;
(2)令bn=
2n2-n
n+c
(n∈N+),是否存在一個非零常數(shù)c,使數(shù)列{bn}也為等差數(shù)列?若存在,求出c的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時從B處出發(fā)沿直線方向以v海里/小時的速度勻速追趕漁船乙,用了t小時追上.
(1)試用t表示漁船甲的速度v,
(2)若要求t不超過2小時追上漁船乙,則速度v至少為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-alnx(a∈R)
(1)求f(x)的極值;
(2)求f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)3z-
.
z
對應的點落在射線y=-x(x≤0)上,且|z+1|=
2
,求復數(shù)z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當t≤x≤t+1時,求函數(shù)y=
1
2
x2-x-
5
2
的最值(其中t為常數(shù)).

查看答案和解析>>

同步練習冊答案