如圖,在直三棱柱(側(cè)棱垂直底面)中,M、N分別是BC、AC1中點,AA1=2,AB=,AC=AM=1.
(1)證明:MN∥平面A1ABB1;
(2)求幾何體C—MNA的體積.
(1)證MN∥A1B ;(2).
【解析】
試題分析:(1)因為,M、N分別是BC、AC1中點,連A1B, A1C,則咋三角形A1BC中,由三角形中位線定理知,MN∥A1B ,又平面A1ABB1,所以,MN∥平面A1ABB1; 6分
(2)因為,側(cè)棱垂直底面,所以側(cè)面垂直于底面。由N是AC1中點,取AC的中點G,則NG垂直于底面,即為三棱錐C—MNA,亦即三棱錐N—AMC的高=AA1,而AA1=2,AB=,
AC=AM=1,由三角形中線定理,
所以,CM=BM=,,. 12分
考點:本題主要考查立體幾何中的平行關(guān)系、體積的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問題的一個基本思路。注意運用轉(zhuǎn)化與化歸思想,將空間問題轉(zhuǎn)化成平面問題。本題體積計算應(yīng)用了“等積法”。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3
| ||
14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州黔東南州高三第二次模擬(5月)考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,
(I)若為的中點,求證:平面平面;
(II)若為線段上一點,且二面角的大小為,試確定的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州黔東南州高三第二次模擬(5月)考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,,為的中點
(I)求證:平面平面;
(II)求到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com