【題目】已知橢圓C: 的右焦點為F(1,0),且點(﹣1, )在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 恒成立?若存在,求出點Q的坐標,若不存在,請說明理由.

【答案】
(1)解:由題意,c=1

∵點(﹣1, )在橢圓C上,∴根據(jù)橢圓的定義可得:2a= ,∴a=

∴b2=a2﹣c2=1,

∴橢圓C的標準方程為


(2)解:假設x軸上存在點Q(m,0),使得 恒成立

當直線l的斜率為0時,A( ,0),B(﹣ ,0),則 =﹣ ,∴ ,∴m=

當直線l的斜率不存在時, , ,則 =﹣ ,

∴m= 或m=

由①②可得m=

下面證明m= 時, 恒成立

當直線l的斜率為0時,結論成立;

當直線l的斜率不為0時,設直線l的方程為x=ty+1,A(x1,y1),B(x2,y2

直線方程代入橢圓方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣ ,y1y2=﹣

=(x1 ,y1)(x2 ,y2)=(ty1 )(ty2 )+y1y2=(t2+1)y1y2 t(y1+y2)+ = + =﹣

綜上,x軸上存在點Q( ,0),使得 恒成立


【解析】(1)利用橢圓的定義求出a的值,進而可求b的值,即可得到橢圓的標準方程;(2)先利用特殊位置,猜想點Q的坐標,再證明一般性也成立即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】光線從點A(-3,4)射出,到x軸上的點B后,被x軸反射到y(tǒng)軸上的點C,又被y軸反射,這時反射光線恰好過點D(-1,6),求光線BC所在直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個不同的零點,且a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q的值等于(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從橢圓上一點軸作垂線,垂足恰好為橢圓的左焦點, 是橢圓的右頂點, 是橢圓的上頂點,且.

(1)求該橢圓的方程;

(2)不過原點的直線與橢圓交于兩點,已知,直線, 的斜率, 成等比數(shù)列,記以, 為直徑的圓的面積分別為,求證; 為定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為,離心率, 為橢圓上的任意一點(不含長軸端點),且面積的最大值為1.

1)求橢圓的方程;

2)已知直線與橢圓交于不同的兩點,且線段的中點不在圓內(nèi),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n2+2n,(n∈N*),求:
(1)數(shù)列{an}的通項公式an;
(2)若bn=an3n , 求數(shù)列{bn}的前n項和 Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,把函數(shù) 的圖象向右平移 個單位,得到函數(shù) 的圖象,若 內(nèi)的兩根,則 的值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若同時滿足以下條件:

在D上單調遞減或單調遞增;

存在區(qū)間,使 上的值域是,那么稱為閉函數(shù).

(1)求閉函數(shù)符合條件的區(qū)間 ;

(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間;若不是請說明理由;

(3)若是閉函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案