若sin=,則cos α=( )
A.- B.- C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用12練習(xí)卷(解析版) 題型:填空題
雙曲線-=1(m>0)的離心率為,則m等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練3練習(xí)卷(解析版) 題型:填空題
函數(shù)y=sin (φ>0)的部分圖象如圖所示,設(shè)P是圖象的最高點(diǎn),A,B是圖象與x軸的交點(diǎn),則tan∠APB=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練2練習(xí)卷(解析版) 題型:填空題
已知a,b∈R,i是虛數(shù)單位.若(a+i)(1+i)=bi,則a+bi=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題
已知雙曲線的一個(gè)焦點(diǎn)與拋物線x2=20y的焦點(diǎn)重合,且其漸近線的方程為3x±4y=0,則該雙曲線的標(biāo)準(zhǔn)方程為( )
A.=1 B. =1
C. =1 D. =1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
若對(duì)于定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對(duì)任意實(shí)數(shù)都成立,則稱f(x)是一個(gè)“λ伴隨函數(shù)”.下列關(guān)于“λ伴隨函數(shù)”的結(jié)論:①f(x)=0不是常數(shù)函數(shù)中唯一一個(gè)“λ伴隨函數(shù)”;②f(x)=x不是“λ伴隨函數(shù)”;③f(x)=x2是“λ伴隨函數(shù)”;④“伴隨函數(shù)”至少有一個(gè)零點(diǎn).其中正確的結(jié)論個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+10a1,a5=9,則a1=( )
A. B.- C. D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題6第1課時(shí)練習(xí)卷(解析版) 題型:解答題
中國(guó)共產(chǎn)黨第十八次全國(guó)代表大會(huì)期間,某報(bào)刊媒體要選擇兩名記者去進(jìn)行專題采訪,現(xiàn)有記者編號(hào)分別為1,2,3,4,5的五名男記者和編號(hào)分別為6,7,8,9的四名女記者.要從這九名記者中一次隨機(jī)選出兩名,每名記者被選到的概率是相等的,用符號(hào)(x,y)表示事件“抽到的兩名記者的編號(hào)分別為x、y,且x<y”.
(1)共有多少個(gè)基本事件?并列舉出來;
(2)求所抽取的兩名記者的編號(hào)之和小于17但不小于11或都是男記者的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)求證:BE∥平面PDA;
(2)若N為線段PB的中點(diǎn),求證:NE⊥平面PDB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com