【題目】已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請(qǐng)說明理由.
【答案】見解析
【解析】(1)∵f(x)=ex-,且y=ex是增函數(shù),
y=-是增函數(shù),∴f(x)是增函數(shù).
∵f(x)的定義域?yàn)镽,
且f(-x)=e-x-ex=-f(x),
∴f(x)是奇函數(shù).
(2)由(1)知f(x)是增函數(shù)和奇函數(shù),
由f(x-t)+f(x2-t2)≥0對(duì)x∈R恒成立,
則f(x-t)≥f(t2-x2).
∴t2-x2≤x-tx2+x≥t2+t對(duì)x∈R恒成立≤min對(duì)一切x∈R恒成立≤0t=-.
即存在實(shí)數(shù)t=-,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生研究性學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標(biāo)隨著聽課時(shí)間的變化而變化,老師講課開始時(shí),學(xué)生的興趣激增;接下來學(xué)生的興趣將保持較理想的狀態(tài)一段時(shí)間,隨后學(xué)生的注意力開始分散.設(shè) 表示學(xué)生注意力指標(biāo),該小組發(fā)現(xiàn) 隨時(shí)間 (分鐘)的變化規(guī)律( 越大,表明學(xué)生的注意力越集中)如下: (,且 )
若上課后第 分鐘時(shí)的注意力指標(biāo)為 ,回答下列問題:
(1)求 的值;
(2)上課后第 分鐘時(shí)和下課前 分鐘時(shí)比較,哪個(gè)時(shí)間注意力更集中?并請(qǐng)說明理由.
(3)在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到 的時(shí)間能保持多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-6x+8<0}, .
(1)若x∈A是x∈B的充分條件,求a的取值范圍.
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;
(2)若在上存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),點(diǎn)在軸上,點(diǎn)在軸上,且,.
(1)當(dāng)點(diǎn)在軸上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)是軌跡上的動(dòng)點(diǎn),點(diǎn)在軸上,圓內(nèi)切于,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一建筑物的三視圖(單位: ),現(xiàn)需將其外壁用油漆粉刷一遍,已知每平方米用漆,問需要油漆多少千克?(無需求近似值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對(duì)100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過100km/h的人與性別有關(guān).
平均車速超過 100km/h人數(shù) | 平均車速不超過 100km/h人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計(jì) |
(2)以上述數(shù)據(jù)樣本來估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù): ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點(diǎn).
(1)求的長;
(2)在以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域?yàn)?/span>,解不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com