雙曲線
y2
9
-
x2
16
=1的點(diǎn)的橫坐標(biāo)的取值范圍是
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:直接作圖得到雙曲線上點(diǎn)的橫坐標(biāo)的范圍.
解答: 解:雙曲線
y2
9
-
x2
16
=1的圖象如圖,

由圖可知,雙曲線上點(diǎn)的橫坐標(biāo)的范圍為R.
故答案為:R.
點(diǎn)評:本題考查了雙曲線的簡單幾何性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x+1)2+y2=8,點(diǎn)C2(1,0),點(diǎn)Q在圓C1上運(yùn)動,QC2的垂直平分線交QC1于點(diǎn)P.
(1)求動點(diǎn)P的軌跡W的方程;
(2)設(shè)M、N分別是曲線W上的兩個不同點(diǎn),且點(diǎn)M在第一象限,點(diǎn)N在第三象限,若
OM
+2
ON
=2
OC1
,O為坐標(biāo)原點(diǎn),求直線MN的斜率kMN
(3)過點(diǎn)S(0,-
1
3
)且斜率為k的動直線l交曲線C=
π
3
于Smax=
3
兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以AB為直徑的圓恒過這個點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P為△ABC內(nèi)一點(diǎn),且
PB
+
PC
+2
PA
=
0
,S△PBC:S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于命題的說法正確的有
 
(請?zhí)顚懴鄳?yīng)的序號):
(1)原命題的否命題與逆命題的真假相同;
(2)命題“△ABC中,若A=B,則sin2A=sin2B”的逆命題是真命題;
(3)命題“x∈R,使x2-x-1<0成立”的否定是真命題;
(4)命題“若函數(shù)y=lg(ax2-2x+1)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(0,1]”的逆否命題是假命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=5x2-4,則f(-2)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,AB=4,AD=2,E,F(xiàn)分別是BC,CD的中點(diǎn),且
DE
BF
=-15,則∠ABC=(  )
A、
π
3
B、
π
6
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
25
+
y2
18
=1
的左右焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,且|PF1|=6,則△F1PF2的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程(x+y)2+(xy+4)2=0表示的曲線是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,連接AC、BD,△BCD的重心為G,化簡
AB
+
1
2
BC
-
3
2
DG
-
AD

查看答案和解析>>

同步練習(xí)冊答案