完成反證法證題的全過程.設(shè)a1,a2, ,a7是1,2, ,7的一個排列,求證:乘積p=(a1-1)(a2-2) (a7-7)為偶數(shù).
證明:假設(shè)p為奇數(shù),則a1-1,a2-2, ,a7-7均為奇數(shù).因奇數(shù)個奇數(shù)之和為奇數(shù),故有奇數(shù)=     =       =0.但0≠奇數(shù),這一矛盾說明p為偶數(shù).
(a1-1)+(a2-2)+ +(a7-7) =  (a1+a2+ +a7)-(1+2+ +7)

試題分析:理解奇偶數(shù)的關(guān)系是本題的關(guān)鍵,利用分組將原來的(a1-1)+(a2-2)+ +(a7-7)變形為(a1+a2+ +a7)-(1+2+ +7),可得出矛盾所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax (a>1).
(1)證明:函數(shù)f(x)在(-1,+∞)上為增函數(shù);
(2)用反證法證明方程f(x)=0沒有負數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用反證法證明:如果x>,那么x2+2x-1≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動點,F(xiàn)1、F2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且
F2M
MP
=0
.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2M的中點,得|OM|=
1
2
|NF1|=…=a
.類似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的動點,F(xiàn)1、F2是橢圓的焦點,M是∠F1PF2的平分線上一點,且
F2M
MP
=0
.則|OM|的取值范圍是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明命題“三角形的內(nèi)角至多有一個鈍角”時,假設(shè)正確的是( )
A.假設(shè)至少有一個鈍角B.假設(shè)至少有兩個鈍角
C.假設(shè)沒有一個鈍角D.假設(shè)沒有一個鈍角或至少有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)x,y,z>0,則三個數(shù), (  )
A.都大于2B.至少有一個大于2
C.至少有一個不小于2D.至少有一個不大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明命題:“一個三角形中不能有兩個直角”的過程歸納為以下三個步驟:
,這與三角形內(nèi)角和為相矛盾,不成立;②所以一個三角形中不能有兩個直角;③假設(shè)三角形的三個內(nèi)角、中有兩個直角,不妨設(shè);正確順序的序號為 (     )
A.①②③B.③①②C.①③②D.②③①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若P=+,Q=+(a≥0),則P,Q的大小關(guān)系是(  )
A.P>QB.P=QC.P<QD.由a的取值確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用反證法證明:“”,應(yīng)假設(shè)為_____________ .

查看答案和解析>>

同步練習(xí)冊答案