【題目】已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),點(diǎn)時(shí)曲線上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為,.

1)寫出曲線的普通方程和極坐標(biāo)方程;

2)求的值.

【答案】1,(2)6

【解析】

1)消去參數(shù),把曲線的參數(shù)方程化為普通方程,再由公式,把曲線的普通方程化為極坐標(biāo)方程;
2)方法1:由兩點(diǎn)的極坐標(biāo),得出,判定為直徑,求出;
方法2:把化為直角坐標(biāo)的點(diǎn)的坐標(biāo),求出兩點(diǎn)間距離

1曲線的參數(shù)方程為,(為參數(shù)),

消去參數(shù),化為普通方程是

,(為參數(shù)),

曲線的普通方程可化為極坐標(biāo),(為參數(shù)).

2)方法1:由是圓上的兩點(diǎn),

且知

為直徑,.

方法2:由兩點(diǎn)化為直角坐標(biāo)中點(diǎn)的坐標(biāo)是:

,

、兩點(diǎn)間的距離為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子工廠生產(chǎn)一種電子元件,產(chǎn)品出廠前要檢出所有次品.已知這種電子元件次品率為0.01,且這種電子元件是否為次品相互獨(dú)立.現(xiàn)要檢測(cè)3000個(gè)這種電子元件,檢測(cè)的流程是:先將這3000個(gè)電子元件分成個(gè)數(shù)相等的若干組,設(shè)每組有個(gè)電子元件,將每組的個(gè)電子元件串聯(lián)起來,成組進(jìn)行檢測(cè),若檢測(cè)通過,則本組全部電子元件為正品,不需要再檢測(cè);若檢測(cè)不通過,則本組至少有一個(gè)電子元件是次品,再對(duì)本組個(gè)電子元件逐一檢測(cè).

1)當(dāng)時(shí),估算一組待檢測(cè)電子元件中有次品的概率;

2)設(shè)一組電子元件的檢測(cè)次數(shù)為,求的數(shù)學(xué)期望;

3)估算當(dāng)為何值時(shí),每個(gè)電子元件的檢測(cè)次數(shù)最小,并估算此時(shí)檢測(cè)的總次數(shù)(提示:利用進(jìn)行估算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為檢查某工廠所生產(chǎn)的8萬臺(tái)電風(fēng)扇的質(zhì)量,抽查了其中20臺(tái)的無故障連續(xù)使用時(shí)限(單位:小時(shí)) 如下:

248 256 232 243 188 268 278 266 289 312

274 296 288 302 295 228 287 217 329 283

分組

頻數(shù)

頻率

頻率/組距

總計(jì)

0.05

1)完成頻率分布表,并作出頻率分布直方圖;

2)估計(jì)8萬臺(tái)電風(fēng)扇中有多少臺(tái)無故障連續(xù)使用時(shí)限不低于280小時(shí);

3)用組中值(同一組中的數(shù)據(jù)在該組區(qū)間的中點(diǎn)值)估計(jì)樣本的平均無故障連續(xù)使用時(shí)限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,準(zhǔn)線方程為,直線過定點(diǎn))且與拋物線交于、兩點(diǎn),為坐標(biāo)原點(diǎn).

1)求拋物線的方程;

2是否為定值,若是,求出這個(gè)定值;若不是,請(qǐng)說明理由;

3)當(dāng)時(shí),設(shè),記,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間與極值;

2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有四個(gè)零點(diǎn),則的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù),且.

1)證明函數(shù)的圖象關(guān)于直線對(duì)稱;

2)當(dāng)時(shí),討論方程解的個(gè)數(shù);

3)若滿足,但,則稱為函數(shù)的二階周期點(diǎn),則是否有兩個(gè)二階周期點(diǎn),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓相交于點(diǎn)A,B兩點(diǎn),且

1)若,求橢圓的方程;

2)直線AB的斜率;

3)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線上有一點(diǎn)的外接圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右頂點(diǎn)分別為.直線和兩條漸近線交于點(diǎn),點(diǎn)在第一象限且,是雙曲線上的任意一點(diǎn).

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);

(3)直線與直線分別交于點(diǎn),證明:以為直徑的圓必過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案