對于給定正數(shù)k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,設f(x)=ax2-2ax-a2+5a+2,對任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,則(  )
分析:由已知條件可得,k≥f(x)在(-∞,+∞)恒成立即k≥f(x)max,結合二次函數(shù)的性質可求函數(shù)f(x)的最大值即可.
解答:解:因為對于任意的x∈(-∞,+∞),恒有fk(x)=f(x),
由已知條件可得,k≥f(x)在(-∞,+∞)恒成立
∴k≥f(x)max
∵f(x)=ax2-2ax-a2+5a+2≤2即函數(shù)f(x)的最大值為2
∴k≥2 即k的最小值為2
故選B.
點評:本題以新定義為載體,主要考查了閱讀、轉化的能力,解決本題的關鍵是利用已知定義轉化為函數(shù)的恒成立問題,結合二次函數(shù)的性質可進行求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

對于給定正數(shù)k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,設f(x)=ax2-2ax-a2+5a+2,對任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,則( 。
A.k的最大值為2B.k的最小值為2
C.k的最大值為1D.k的最小值為1

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省部分重點中學聯(lián)考高三(上)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

對于給定正數(shù)k,定fk(x)=,設f(x)=ax2-2ax-a2+5a+2,對任意x∈R和任意a∈(-∞,0)恒有,則( )
A.k的最大值為2
B.k的最小值為2
C.k的最大值為1
D.k的最小值為1

查看答案和解析>>

同步練習冊答案