設(shè)x>0,y>0,且log2x+log2y=2,則
1
x
+
1
y
的最小值為
 
考點(diǎn):基本不等式,對(duì)數(shù)的運(yùn)算性質(zhì)
專題:常規(guī)題型,計(jì)算題
分析:先利用對(duì)數(shù)的運(yùn)算性質(zhì)求得xy,然后結(jié)合基本不等式即可求解最值
解答: 解:∵x>0,y>0,且log2x+log2y=2,
由對(duì)數(shù)的運(yùn)算性質(zhì)可得,log2xy=2,
∴xy=4,
1
x
+
1
y
≥2
1
xy
=1,
當(dāng)且僅當(dāng)x=y=2時(shí)取等號(hào),最小值為1,
故答案為:1.
點(diǎn)評(píng):本題主要考查了對(duì)數(shù)的運(yùn)算性質(zhì)及基本不等式在求解最值中的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對(duì)角線BD折成直二面角,若點(diǎn)P滿足
BP
=
1
2
BA
-
1
2
BC
+
BD
,則|
BP
|的值為( 。
A、
3
2
B、2
C、
10-
2
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:△ABC是等邊三角形的充要條件是a2+b2+c2=ab+ac+bc.(這里a,b,c是△ABC的三條邊)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)函數(shù)f(x)=x+
1
x

(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)證明函數(shù)f(x)在x∈[1,+∞)上是增函數(shù).
(3)若f(a)>2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(lg9-1)2
的值等于(  )
A、lg9-1
B、1-lg9
C、8
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+2的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈(0,6),b∈(0,6).
(Ⅰ)求|a-b|≤1的概率;
(Ⅱ)以a,b作為直角三角形兩直角邊的邊長,則斜邊長小于6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知1∈{a,a+1,a2},則實(shí)數(shù)a的可取值是( 。
A、0B、1
C、-1D、0或1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*).若S3,S9,S6成等差數(shù)列,則 
a8
a2+a5
的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案