已知橢圓ε:a>b>0),動圓,其中ba. 若A是橢圓ε上的點,B是動圓上的點,且使直線AB與橢圓ε和動圓均相切,求A、B兩點的距離的最大值.

解析:設(shè)A、B,直線AB的方程為

因為A既在橢圓上又在直線AB上,從而有

將(1)代入(2)得

由于直線AB與橢圓相切,故

從而可得,                      (3)……………………5分

同理,由B既在圓上又在直線AB上,可得

                          (4)……………………10分

由(3)、(4)得,

,當(dāng)且僅當(dāng)時取等號

所以A、B兩點的距離的最大值為. …………………………20分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),離心率為
2
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點F且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,求點G的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點為F1、F2,點P為橢圓上一點,△F1PF2的重心、內(nèi)心分別為G、I,若
IG
=λ(1,0)(λ≠0)
,則橢圓的離心率e等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第一次統(tǒng)考理科數(shù)學(xué) 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點為圓心,以橢圓C的短半軸長為半徑

的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點,P為橢圓C上任一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴

求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點A,B且線段AB的垂直平分線過定點

C(,0)求實數(shù)k的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第七次月考理科數(shù)學(xué) 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點,P為橢圓C上任一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點A,B且線段AB的垂直平分線過定點C(,0)求實數(shù)k的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省洛陽市高三上學(xué)期期末考試理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

    已知橢圓E:(a>b>0)的離心率e=,左、右焦點分別為F1、F2,點P(2,),點F2在線段PF1的中垂線上

   (1)求橢圓E的方程;

   (2)設(shè)l1,l2是過點G(,0)且互相垂直的兩條直線,l1交E于A, B兩點,l2交E于C,D兩點,求l1的斜率k的取值范圍;

   (3)在(2)的條件下,設(shè)AB,CD的中點分別為M,N,試問直線MN是否恒過定點?

若經(jīng)過,求出該定點坐標(biāo);若不經(jīng)過,請說明理由。

 

 

查看答案和解析>>

同步練習(xí)冊答案