如圖,在等腰△ABC中,兩腰上的中線分別為BD、CE,且BD⊥CE,求頂角∠A的余弦值.
考點:解三角形
專題:綜合題,推理和證明
分析:連接DE,過E點作EF⊥BC,垂足為F,設(shè)DE=2x,DE為△ABC的中位線,故BC=4x,四邊形BCDE為等腰梯形,根據(jù)等腰梯形的性質(zhì)可知,BF=
1
2
(BC-DE)=x,則FC=3x,又△BCG為等腰直角三角形,故△CEF為等腰直角三角形,則EF=CF=3x,解Rt△BEF可求解cos∠BEF,利用二倍角公式可得頂角∠A的余弦值.
解答: 解:如圖,連接DE,過E點作EF⊥BC,垂足為F,設(shè)DE=2x,
依題意,得DE為△ABC的中位線,∴BC=4x,
又∵四邊形BCDE為等腰梯形,
∴BF=
1
2
(BC-DE)=x,則FC=3x,
∵BD⊥CE,
∴△BCG為等腰直角三角形,
∵EF⊥BC,
∴△CEF為等腰直角三角形,
∴EF=CF=3x,
在Rt△BEF中,EF=3x,BF=x,BE=
10
x
∴cos∠BEF=
3
10
,
∴cos∠A=2cos2∠BEF-1=2×
9
10
-1=
4
5
點評:本題考查了銳角三角函數(shù)值的求法,三角形中位線定理,梯形的性質(zhì).求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,通過設(shè)參數(shù)的方法,把問題轉(zhuǎn)化到直角三角形中求三角函數(shù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4sinωx•cos(ωx+
π
3
)+
3
,(ω>0)的最小正周期是π,求函數(shù)f(x)在[-
π
4
,
π
6
]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asinxcosx+bsin2x,x∈R,且f(
π
12
)=
3
-1,f(
π
6
)=1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(
α
2
)=
3
5
,α∈(-π,
π
3
),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,若a2+2,a4+4,a6+6構(gòu)成等比數(shù)列,這數(shù)列{an}的公差d等于( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1和直線l:y=kx+
2
,則k=1是圓O與直線l相切的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-lnx,x>0
x+
a
0
3t2dt,x≤0
,若f(f(e))=1(e是自然對數(shù)的底數(shù)),則a的值為( 。
A、1B、2C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)在函數(shù)y=2x2+x的圖象上,則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式|2x-1|-|x-1|≤log2a.
(1)當(dāng)a=8時,求不等式解集.
(2)若不等式有解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,記角A、B、C所對的邊長分別為a、b、c,若
AB
AC
<0,則下列結(jié)論中:
①△ABC是鈍角三角形;             ②a2>b2+c2;
③cosBcosC>sinBsinC;           ④sinB>cosC;
其中錯誤結(jié)論的序號是
 

查看答案和解析>>

同步練習(xí)冊答案