設(shè)x,y∈R,且x+y=5,則3x+3y的最小值為( 。
A、0
B、6
3
C、4
3
D、18
3
分析:首先判斷3x>0,3y>0,然后知3x+3y≥2
3x+y
=18
3
解答:解:由3x>0,3y>0,
∴3x+3y≥2
3x+y
=18
3

所以3x+3y的最小值為18
3

故選D.
點評:本題考查均值不等式的性質(zhì)和應(yīng)用,解題時要注意公式的正確應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

①設(shè)x,y∈R+,且x+y+xy=2,求x+y的最小值.
②設(shè)x≥0,y≥0,且x2+y2=4,求xy-4(x+y)-2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,且x+y=4,則5x+5y的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R+,且x+y=6,則lgx+lgy的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,且x+y=4,則5x+5y的最小值是
50
50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,且x+4y=40,則lgx+lgy的最大值是( 。

查看答案和解析>>

同步練習(xí)冊答案