已知拋物線C:y=
1
8
x2,則以拋物線的焦點F為一個焦點,且離心率為
2
的雙曲線E的標(biāo)準(zhǔn)方程為( 。
A、
x2
2
-
y2
2
=1
B、
y2
2
-
x2
2
=1
C、
y2
1
2
-
x2
1
2
=1
D、
x2
1
2
-
y2
1
2
=1
考點:雙曲線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得,雙曲線的一個焦點為(0,2),再根據(jù)離心率為
2
,求得a的值,從而可得b2的值,從而得到雙曲線E的標(biāo)準(zhǔn)方程.
解答: 解:拋物線C:y=
1
8
x2,即x2=8y,此拋物線的焦點F(0,2),故雙曲線的一個焦點為(0,2).
故對于雙曲線,c=2,再根據(jù)離心率為
2
,可得
2
a
=
2
,∴a=
2
,∴b2=c2-a2=2,
故要求的雙曲線E的標(biāo)準(zhǔn)方程
y2
2
-
x2
2
=1,
故選:B.
點評:本題主要考查拋物線、雙曲線的定義、性質(zhì)和標(biāo)準(zhǔn)方程,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,i為虛數(shù)單位,且復(fù)數(shù)
a
1+i
+
1+i
2
是實數(shù),則a=(  )
A、1
B、
1
5
C、-
1
5
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖二次函數(shù)y=ax2+
3
x+c(a<0)的圖象過點C(t,4),且與x軸相交于A,B兩點,若AC⊥BC,則a的取值為( 。
A、-1
B、-
1
4
C、-
1
2
D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α角的終邊上一點P的坐標(biāo)是(cos
π
5
,sin
π
5
),則α等于( 。
A、
π
5
B、-
π
5
C、2kπ+
3
10
π(k∈Z)
D、2kπ+
π
5
(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AD是BC邊上的高,給出下列結(jié)論:①
AD
•(
AB
-
AC
)=0;②|
AB
+
AC
|≥2|
AD
|;③
AC
AD
|
AD
|
=|
AB
|sinB.其中結(jié)論正確的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從8名學(xué)生中,男生選2人,女生選1人,分別參加語、數(shù)、英三科比賽,共有90種不同方案,那么男、女生人數(shù)是(  )
A、2男6女B、6男2女
C、5男3女D、3男5女

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x2-2x,求f(-2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分剮是角A,B,C的對邊,且3cosAcosC(tanAtanC-1)=1.
(Ⅰ)求sin(2B-
6
)的值;
(Ⅱ)若a+c=
3
3
2
,b=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解甲、乙兩個班級某次考試的數(shù)學(xué)成績,從甲、乙兩個班級中分別隨機(jī)抽取5名學(xué)生的成績(單位:分)作樣本,如圖是樣本的莖葉圖:
(1)分別計算甲、乙兩個班級數(shù)學(xué)成績的樣本的平均數(shù);
(2)從甲、乙兩個班級數(shù)學(xué)成績的樣本中各隨機(jī)抽取1名同學(xué)的數(shù)學(xué)成績,求抽到的成績之差的絕對值不低于20的概率.

查看答案和解析>>

同步練習(xí)冊答案