【題目】某校高二年級共有800名學(xué)生參加2019年全國高中數(shù)學(xué)聯(lián)賽江蘇賽區(qū)初賽,為了解學(xué)生成績,現(xiàn)隨機(jī)抽取40名學(xué)生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:
分組 | |||||
頻數(shù) |
⑴試估計該年級成績不低于90分的學(xué)生人數(shù);
⑵成績在的5名學(xué)生中有3名男生,2名女生,現(xiàn)從中選出2名學(xué)生參加訪談,求恰好選中一名男生一名女生的概率.
【答案】(1) 300人;(2)
【解析】
(1)由頻數(shù)分布表可得40人中成績不低于90分的學(xué)生人數(shù)為15人,由此可計算出該年級成績不低于90分的學(xué)生人數(shù);
(2)根據(jù)題意寫出所有的基本事件,確定基本事件的個數(shù),即可計算出恰好選中一名男生一名女生的概率。
⑴40名學(xué)生中成績不低于90分的學(xué)生人數(shù)為15人;
所以估計該年級成績不低于90分的學(xué)生人數(shù)為
⑵分別記男生為1,2,3號,女生為4,5號,從中選出2名學(xué)生,有如下基本事件
(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)
因此,共有10個基本事件,上述10個基本事件發(fā)生的可能性相同,且只有6個基本事件是選中一名男生一名女生(記為事件),
即(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)
∴
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)40名數(shù)學(xué)教師,按年齡從小到大編號為1,2,…40,F(xiàn)從中任意選取6人分成兩組分配到A,B兩所學(xué)校從事支教工作,其中三名編號較小的教師在一組,三名編號較大的教師在另一組,那么編號為8,12,28的數(shù)學(xué)教師同時入選并被分配到同一所學(xué)校的方法種數(shù)是
A. 220 B. 440 C. 255 D. 510
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若函數(shù)在區(qū)間上的最小值是,求的值;
(3)設(shè),是函數(shù)圖象上任意不同的兩點,線段的中點為,直線的斜率為.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線(為參數(shù))與曲線相交于兩點.
(I)試寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一袋中有大小相同的4個紅球和2個白球,給出下列結(jié)論:
從中任取3球,恰有一個白球的概率是;
從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為;
從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為.
其中所有正確結(jié)論的序號是______ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某屆奧運(yùn)會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三年級一班至六班進(jìn)行了“本屆奧運(yùn)會中國隊表現(xiàn)”的滿意度調(diào)查結(jié)果只有“滿意”和“不滿意”兩種,從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如表:
班號 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 5 | 9 | 11 | 9 | 7 | 9 |
滿意人數(shù) | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年級全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對“本屆奧運(yùn)會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是( 。
A.(0,1)B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知集合A={x|-2<x<0},B={x|y=}
(1)求(RA)∩B;
(2)若集合C={x|a<x<2a+1}且CA,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com